Tsunami waves leave sedimentary signatures both onshore and offshore, although the latter are hardly known. The objective of the present study is to provide new evidence for the 2004 Indian Ocean tsunami deposits left on the inner continental shelf of the Andaman Sea (Thailand) and to identify diagnostic sedimentological and geochemical properties of these deposits. Based on extensive seafloor mapping, three sediment cores were selected for study and were analysed for their sedimentary structures, grain size composition, chemical elemental composition, physical properties and 210 Pb activity. Sediment cores retrieved from shallow water (9-15 m) within 7.5 km off the shore revealed distinct event layers, which were interpreted as being tsunami deposits. These 20-25 cm thick deposits were already covered with post-tsunami marine sediments. They were composed of several units, marine sand layers alternating with poorly sorted mud with terrigenous and anthropogenic components, representing different hydrodynamic conditions (probably during run-up and backwash phase). These sedimentological observations were supported by geochemical and physical data and were confirmed using 210 Pb dating. A sediment core taken from a depth of 57 m at a distance of 25 km offshore did not reveal clear event deposits. Comparisons with available data from offshore tsunami deposits showed that there is no single set of signatures that could be applied to identify this kind of deposits.
Microplastics (MP) data collection from the aquatic environment is a challenging endeavour that sets apparent limitations to regional and global MP quantification. Expensive data collection causes small sample sizes and oftentimes existing data sets are compared without accounting for natural variability due to hydrodynamic processes governing the distribution of particles. In Warnow estuarine sediments (Germany) we found significant correlations between high-density polymer size fractions (≥500 µm) and sediment grain size. Among potential predictor variables (source and environmental terms) sediment grain size was the critical proxy for MP abundance. The MP sediment relationship can be explained by the force necessary to start particle transport: at the same level of fluid motion, transported sediment grains and MP particles are offset in size by one to two orders of magnitude. Determining grain-size corrected MP abundances by fractionated granulometric normalisation is recommended as a basis for future MP projections and identification of sinks and sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.