The present case study deals with a controlled drawdown beyond the operational level of the Gepatsch reservoir (Austria). Based on the awareness of potential ecological consequences, an advanced set of measures was conducted and an integrative monitoring design was implemented. This pre- and post-event monitoring included measurements regarding the cross sectional variability and habitat-related turbidity, freeze-core sampling to obtain knowledge on fine sediment infiltration and an evaluation of the macroinvertebrate communities as well as fish egg development (salmonid incubation). The results of the sedimentological as well as biological investigations show a negligible impact on the downstream located aquatic system due to the controlled drawdown of the Gepatsch reservoir. In addition, recommendations based on the findings from this study regarding possible methods for local scale monitoring can be given.
Earth observation offers a variety of techniques for monitoring and characterizing geomorphic processes in high mountain environments. Terrestrial laserscanning and unmanned aerial vehicles provide very high resolution data with high accuracy. Automatic cameras have become a valuable source of information—mostly in a qualitative manner—in recent years. The availability of satellite data with very high revisiting time has gained momentum through the European Space Agency’s Sentinel missions, offering new application potential for Earth observation. This paper reviews the status of recent techniques such as terrestrial laserscanning, remote sensed imagery, and synthetic aperture radar in monitoring high mountain environments with a particular focus on the impact of new platforms such as Sentinel-1 and -2 as well as unmanned aerial vehicles. The study area comprises the high mountain glacial environment at the Pasterze Glacier, Austria. The area is characterized by a highly dynamic geomorphological evolution and by being subject to intensive scientific research as well as long-term monitoring. We primarily evaluate landform classification and process characterization for: (i) the proglacial lake; (ii) icebergs; (iii) the glacier river; (iv) valley-bottom processes; (v) slope processes; and (vi) rock wall processes. We focus on assessing the potential of every single method both in spatial and temporal resolution in characterizing different geomorphic processes. Examples of the individual techniques are evaluated qualitatively and quantitatively in the context of: (i) morphometric analysis; (ii) applicability in high alpine regions; and (iii) comparability of the methods among themselves. The final frame of this article includes considerations on scale dependent process detectability and characterization potentials of these Earth observation methods, along with strengths and limitations in applying these methods in high alpine regions.
For Europe, a reduction of 80% of the potential storage volume due to reservoir sedimentation is predicted by 2080. Sedimentation processes trigger the decrease of the storage volume and a related restriction in hydropower production. Further, the artificial downstream flushing of deposited fines has manifold effects on the aquatic ecology, including changes in morphology and sediment quality, as well as increased turbidity and subsequent stress for aquatic species. However, it is common to lower the water surface of reservoirs for technical inspections, which is not comparable to reservoir flushing operations. The presented case study deals with such a controlled drawdown beyond the operational level of the Gepatsch reservoir (Tyrol, Austria). Based on the awareness of possible ecological consequences, an advanced set of measures and an integrative monitoring design, consisting of a detailed event-based quantification of suspended sediments, changes in the morphology, especially with respect to fine sediments, and analyses of the biological quality element fish on the reach scale along the Inn River have been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.