We report on the study of a new family of neutral heteroleptic Ir(F 2 ppy) 2 L (F 2 ppy ¼ 2-(2,4-difluorophenyl)pyridine) complexes bearing different triazole derivatives (L ¼ 2-(1,2,3-triazol-5-yl)pyridine) as the third ligand. Two of these ligands were used for the first time as ancillary ligands in iridium(III) complexes. A full photophysical and electrochemical study of these complexes is reported here, together with theoretical investigations at the density functional theory (DFT) level. The complexes were also obtained as single crystals and their structures were determined by X-ray crystallography. The newly reported complexes exhibit blue emission with high quantum yields in solution. Photophysical results are also compared to those reported for their 1,2,4-triazole isomer analogues. The emitting state is a mixture between the triplet metal-to-ligand charge transfer ( 3 MLCT) and triplet inter-ligand charge transfer ( 3 ILCT) states, and it is more localized on the F 2 ppy ligand as supported by DFT calculations. In addition, this paper reports some preliminary tests of polymer lightemitting diodes (PLEDs) doped with these iridium complexes. The results indicate that such molecules are good candidates as blue-and green-emitting dopants in LED devices.
Optimization of cell-material interactions is crucial for the success of synthetic biomaterials in guiding tissue regeneration. To do so, catechol chemistry is often used to introduce adhesiveness into biomaterials. Here, a supramolecular approach based on ureido-pyrimidinone (UPy) modified polymers is combined with catechol chemistry in order to achieve improved cellular adhesion onto supramolecular biomaterials. UPy-modified hydrophobic polymers with non-cell adhesive properties are developed that can be bioactivated via a modular approach using UPy-modified catechols. It is shown that successful formulation of the UPy-catechol additive with the UPy-polymer results in surfaces that induce cardiomyocyte progenitor cell adhesion, cell spreading, and preservation of cardiac specific extracellular matrix production. Hence, by functionalizing supramolecular surfaces with catechol functionalities, an adhesive supramolecular biomaterial is developed that allows for the possibility to contribute to biomaterial-based regeneration.
The major bottleneck in gene therapy remains the issue of delivery. In this work, various modified poly(propylene imine) (PPI) dendrimers are introduced as gene transfection agents. Commercially available PPI-dendrimers have been modified (i) at the exterior primary amines with acetyl groups or glycol gallate (PEG-like) groups, and (ii) at the interior tertiary amines with methyl iodide (MeI) or MeCl to produce multiple quaternized cationic sites in the core of the dendrimer. The prepared materials have been tested with respect to their binding capabilities to DNA, their toxicity in cell cultures, their in vitro transfection efficiency and their in vivo delivery possibilities. In all cases, a 33-mer oligonucleotide (DNAzyme) was used. Polyacrylamide gel electrophoresis (PAGE) studies have demonstrated strong but reversible binding, where the quarternized and higher generation dendrimer species have shown more potent binding. Typically, for the modified fourth PPI-dendrimers, binding is observed at a concentration of about 4 microM DNA and a dendrimer-DNA charge ratio of around 2:1-1:1. All the tested PPI-dendrimers display a low cellular toxicity, especially when higher serum contents are used in the culture medium. For example, most of the prepared fourth generation PPI-dendrimers are not or hardly toxic up to at least 20 microM in 20% serum. An in vitro characterization has revealed a high dendrimer-mediated intracellular uptake of the DNAzyme: all the tested fourth generation PPI-dendrimers display transfection efficiencies close to or exceeding 80%, even when the concentration of serum in the medium is increased from 10 to 40%. Finally, the potential of using modified PPI-dendrimers for in vivo gene therapy experiments is demonstrated. Injecting a G4-PEG(MeI)-ssDNA complex intravenously into Nude mice has resulted in a high nuclear uptake as confirmed by co-localization studies.
The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.