The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential
When technical goods, like mainboards and other electronic components, are produced, quality assurance (QA) is very important. To achieve this goal, different optical microscopes can be used to analyze a variety of specimen to gain comprehensive information by combining the acquired sensor data. In many industrial processes, cameras are used to examine these technical goods. Those cameras can analyze complete boards at once and offer a high level of accuracy when used for completeness checks. When small defects, e.g. soldered points, need to be examined in detail, those wide area cameras are limited. Microscopes with large magnification need to be used to analyze those critical areas. But microscopes alone cannot fulfill this task within a limited time schedule, because microscopic analysis of complete motherboards of a certain size is time demanding. Microscopes are limited concerning their depth of field and depth of focus, which is why additional components like XY moving tables need to be used to examine the complete surface. Yet today's industrial production quality standards require a 100 per cent control of the soldered components within a given time schedule. This level of quality, while keeping inspection time low, can only be achieved when combining multiple inspection devices in an optimized manner. This paper presents results and methods of combining industrial cameras with microscopy instrumenting a classificatory based approach intending to keep already deployed QA processes in place but extending them with the purpose of increasing the quality level of the produced technical goods while maintaining high throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.