Hepatocyte growth factor (HGF) is a potent mitogen, motogen, and morphogen for various epithelial cell types. The pleiotropic effects of HGF are mediated by its binding to a specific high affinity receptor, c-Met. In addition, HGF binds to heparan sulfate proteoglycans on cell surfaces and within the extracellular matrix. Incubation of HGF with 0.1, 1.0, and 10 micrograms/ml of heparin, heparan sulfate, or dextran sulfate resulted in a concentration-dependent increase in mitogenic potency in a primary rat hepatocyte bioassay, whereas sodium sulfate or fucoidan did not. Although co-incubation of HGF with sulfated compounds that enhanced HGF-dependent mitogenesis did not alter the binding isotherm of HGF for the c-Met receptor in a solid phase assay, an increase in autophosphorylation of the c-Met receptor in intact A549 cells was observed upon their addition. A series of chemically sulfated malto-oligosaccharides varying in unit size and charge was tested in the bioassay in order to provide additional insights into the nature of the HGF-heparin interaction. While sulfated di-, tri-, tetra-, and pentasaccharides did not significantly potentiate HGF-dependent mitogenesis, larger oligosaccharides such as the sulfated hexa-, hepta-, or a sulfated oligosaccharide mixture containing decasaccharides resulted in an approximate 2-, 4-, and 7-fold enhancement, respectively. We observed a correlation between the sulfated oligosaccharide preparations that enhanced mitogenic potency and those that promoted HGF oligomerization in vitro, as measured by gel filtration and analytical ultracentrifugation. These findings indicate that heparin-like molecules can stabilize HGF oligomers, which may facilitate c-Met receptor dimerization and activation.
Dimethyl disulfide reacts with triflic anhydride to provide a highly reactive electrophile. Various thioglycosides, differing in their thio aglycons, carbohydrate units, and protecting group pattern, were activated with Me2S2-Tf2O in the presence of different glycosyl acceptors. The reactions proceeded at low temperatures within a short time, affording oligosaccharides in high yields both on primary and secondary hydroxyls. Armed and disarmed glycosyl donors were activated equally efficiently.
Heparan sulfate (HS) serves as a receptor for adherence of herpes simplex viruses, Chlamydia trachomatis, Neisseria gonorrhoeae, and, indirectly, human immunodeficiency virus. Using primary human culture systems, we identified sulfated carbohydrate compounds that resemble HS and competitively inhibit infection by these pathogens. These compounds are candidates for intravaginal formulations for the prevention of sexually transmitted diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.