The thermohaline stability problem previously treated by Stern, Walin and Veronis is examined in greater detail. An error in an earlier paper is corrected and some new calculations made. It is shown, for instance, that direct convection can occur for thermal Rayleigh number R much less than 100 Rs when Rs [gsim ] 0·1, where Rs is the salinity Rayleigh number. A graphical presentation is devised to show the relative importance of the different terms in the equations of motion as a function of R and Rs. The most unstable mode over all wave-numbers for each R, Rs is found and it is shown that where both unstable direct and oscillating modes are present, the most unstable mode is direct in most cases.
[1] Three prominent quasi-global patterns of variability and change are observed using the Met Office's sea surface temperature (SST) analysis and almost independent night marine air temperature analysis. The first is a global warming signal that is very highly correlated with global mean SST. The second is a decadal to multidecadal fluctuation with some geographical similarity to the El Niño-Southern Oscillation (ENSO). It is associated with the Pacific Decadal Oscillation (PDO), and its Pacific-wide manifestation has been termed the Interdecadal Pacific Oscillation (IPO). We present model investigations of the relationship between the IPO and ENSO. The third mode is an interhemispheric variation on multidecadal timescales which, in view of climate model experiments, is likely to be at least partly due to natural variations in the thermohaline circulation. Observed climatic impacts of this mode also appear in model simulations. Smaller-scale, regional atmospheric phenomena also affect climate on decadal to interdecadal timescales. We concentrate on one such mode, the winter North Atlantic Oscillation (NAO). This shows strong decadal to interdecadal variability and a correspondingly strong influence on surface climate variability which is largely additional to the effects of recent regional anthropogenic climate change. The winter NAO is likely influenced by both SST forcing and stratospheric variability. A full understanding of decadal changes in the NAO and European winter climate may require a detailed representation of the stratosphere that is hitherto missing in the major climate models used to study climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.