Young's modulus E for polyethylene in the chain direction is calculated with molecular orbital theory applied to n‐alkanes C3H8 through n‐C13H28 and analyzed with the cluster‐difference method. Semiempirical CNDO, MNDO, and AM1 models and ab initio HF/STO‐3G, HF/6‐31G, HF/6‐31G*, and MP2/6‐31G* models are used. Cluster‐difference results, when extrapolated to infinite chain length, give E in good agreement with moduli evaluated with molecular cluster or crystal orbital methods, provided minimal basis sets are employed. E decreases from 495 GPa (CNDO) to 336 GPa (MP2/6‐31G*) as the level of theory is improved, consistent with established behaviors of the various models. Our calculations do not reproduce earlier molecular cluster or crystal orbital results, which gave E < 330 GPa. The most rigorous MP2/6‐31G* model is known to overestimate force constants by ∼ 11%; the scaled modulus E = 299 GPa is in good accord with E = 306 GPa from recent calculations based on experimental vibration frequencies. © 1996 John Wiley & Sons, Inc.
Facility siting methods to optimize the layout of industrial facilities for risk reduction have been evolving for decades from subjective views, standards, and guidelines to quantitative numerical analysis. The authors of this paper have tossed out the past, moved beyond the present, and taken out their crystal balls to provide a discussion around the future of facility siting by focusing on technology driven enhancements associated with three main themes: mainstreaming of current advanced analysis techniques into the base case methodology, incorporating company and/or site specific data trending and analytics to operationalize the studies, and the potential transformational change to machine learning‐based predictive risk management. With technological advancements touching nearly every area of business, it is no surprise that it is also changing the landscape of consequence and risk‐based facility siting approaches. As with all markets, the customer will be a key driver for the advancements of technical safety studies to suit their adapting needs. However, as this article will show, personnel conducting facility siting studies are also using technological advancements to challenge the status quo by improving data fidelity, increasing the robustness and depth of analysis, and providing improved insights to aid decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.