We present "Ouroboros Praos", a proof-of-stake blockchain protocol that, for the first time, provides security against fully-adaptive corruption in the semi-synchronous setting: Specifically, the adversary can corrupt any participant of a dynamically evolving population of stakeholders at any moment as long the stakeholder distribution maintains an honest majority of stake; furthermore, the protocol tolerates an adversarially-controlled message delivery delay unknown to protocol participants. To achieve these guarantees we formalize and realize in the universal composition setting a suitable form of forward secure digital signatures and a new type of verifiable random function that maintains unpredictability under malicious key generation. Our security proof develops a general combinatorial framework for the analysis of semi-synchronous blockchains that may be of independent interest. We prove our protocol secure under standard cryptographic assumptions in the random oracle model. Tokyo Institute of Technology and IOHK, bdavid@c.titech.ac.jp. IOHK, peter.gazi@iohk.io.
Sidechains have long been heralded as the key enabler of blockchain scalability and interoperability. However, no modeling of the concept or a provably secure construction has so far been attempted. We provide the first formal definition of what a sidechain system is and how assets can be moved between sidechains securely. We put forth a security definition that augments the known transaction ledger properties of persistence and liveness to hold across multiple ledgers and enhance them with a new "firewall" security property which safeguards each blockchain from its sidechains, limiting the impact of an otherwise catastrophic sidechain failure. We then provide a sidechain construction that is suitable for proof-of-stake (PoS) sidechain systems. As an exemplary concrete instantiation we present our construction for an epoch-based PoS system consistent with Ouroboros (Crypto 2017), the PoS blockchain protocol used in Cardano which is one of the largest pure PoS systems by market capitalisation, and we also comment how the construction can be adapted for other protocols such as Ouroboros Praos (Eurocrypt 2018), Ouroboros Genesis (CCS 2018), Snow White and Algorand. An important feature of our construction is merged-staking that prevents "goldfinger" attacks against a sidechain that is only carrying a small amount of stake. An important technique for pegging chains that we use in our construction is cross-chain certification which is facilitated by a novel cryptographic primitive we introduce called ad-hoc threshold multisignatures (ATMS) which may be of independent interest. We show how ATMS can be securely instantiated by regular and aggregate digital signatures as well as succinct arguments of knowledge such as STARKs and bulletproofs with varying degrees of storage efficiency.
Abstract.We consider the question of efficiently extending the key length of block ciphers. To date, the approach providing highest security is triple encryption (used e.g. in Triple-DES), which was proved to have roughly κ + min{n/2, κ/2} bits of security when instantiated with ideal block ciphers with key length κ and block length n, at the cost of three block-cipher calls per message block. This paper presents a new practical key-length extension scheme exhibiting κ + n/2 bits of security -hence improving upon the security of triple encryption -solely at the cost of two block cipher calls and a key of length κ + n. We also provide matching generic attacks showing the optimality of the security level achieved by our approach with respect to a general class of two-query constructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.