In this study, we investigated whether overexpression of pigment epithelium-derived factor (PEDF) by gene transfer can inhibit neovascularization by testing its effect in three different models of ocular neovascularization. Intravitreous injection of an adenoviral vector encoding PEDF resulted in expression of PEDF mRNA in the eye measured by RT-PCR and increased immunohistochemical staining for PEDF protein throughout the retina. In mice with laser-induced rupture of Bruch's membrane, choroidal neovascularization was significantly reduced after intravitreous injection of PEDF vector compared to injection of null vector or no injection. Subretinal injection of the PEDF vector resulted in prominent staining for PEDF in retinal pigmented epithelial cells and strong inhibition of choroidal neovascularization. In two models of retinal neovascularization (transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors and mice with oxygen-induced ischemic retinopathy), intravitreous injection of null vector resulted in decreased neovascularization compared to no injection, but intravitreous injection of PEDF vector resulted in further inhibition of neovascularization that was statistically significant. These data suggest that sustained increased intraocular expression of PEDF by gene therapy might provide a promising approach for treatment of ocular neovascularization.
In retinal microsurgery, surgeons are required to perform micron scale maneuvers while safely applying forces to the retinal tissue that are below sensory perception. Real-time characterization and precise manipulation of this delicate tissue has thus far been hindered by human limits on tool control and the lack of a surgically compatible endpoint sensing instrument. Here we present the design of a new generation, cooperatively controlled microsurgery robot with a remote center-of-motion (RCM) mechanism and an integrated custom micro-force sensing surgical hook. Utilizing the forces measured by the end effector, we correct for tool deflections and implement a micro-force guided cooperative control algorithm to actively guide the operator. Preliminary experiments have been carried out to test our new control methods on raw chicken egg inner shell membranes and to capture useful dynamic characteristics associated with delicate tissue manipulations.
Transgenic mice with vascular endothelial growth factor (VEGF) driven by the rhodopsin promoter (rho/VEGF mice) develop neovascularization that originates from the deep capillary bed of the retina and grows into the subretinal space. In rho/VEGF mice, VEGF expression in photoreceptors begins between postnatal days 5 and 7, the period when the deep capillary bed is developing. An important question is whether or not the developmental stage of the deep capillary bed is critical for occurrence of neovascularization. Also, although rho/VEGF mice are extremely useful for the study of ocular neovascularization, there are some applications for which the early onset of VEGF expression is a disadvantage. In this study, we used the reverse tetracycline transactivator (rtTA) inducible promoter system coupled to either the rhodopsin or interphotoreceptor retinoidbinding protein ( Damage to retinal capillaries resulting in retinal ischemia is a constant feature in diseases complicated by retinal neovascularization. Therefore, the demonstration that vascular endothelial cell growth factor (VEGF) is up-regulated by hypoxia 1,2 focused attention on VEGF as a candidate mediator of retinal neovascularization. Circumstantial evidence suggesting that VEGF plays a role was provided by temporal and spatial correlation of VEGF expression with retinal neovascularization in patients and animal models. 3-8 Inhibition of retinal neovascularization by several different types of VEGF antagonists has demonstrated that VEGF is a necessary stimulatory factor. 9 -13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.