The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added which covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to modern singularity theory.
SynopsisAssociated to every plane curve there is the locus of centres of circles bitangent to that curve, the so-called symmetry set of the curve. We can view this set as the spine of our curve, which can be recovered by taking the envelope of circles of varying radii along this spine. Varying the symmetry set in some isotopy while keeping the radius function fixed may be viewed as crudely modelling motion of the original curve viewed as a biological object. Fixing the symmetry set and varying the radius function can be considered to model growth crudely. In this paper we shall describe the generic changes in the curves which take place in the process of growth and motion, and outline the corresponding results for spheres centred on a space curve. We also use the idea of a stratified Morse function to describe the generic changes which occur in one parameter families of (full) bifurcation sets in the plane. Applying this to the bifurcation set of distance squared functions we find all the transitions of a symmetry set (and evolute) which occur in a generic isotopy of a plane curve.
SynopsisFor a smooth manifold M ⊆ ℝn, the symmetry set S(M) is defined to be the closure of the set of points u∈ℝn which are centres of spheres tangent to M at two or more distinct points. (The idea has its origin in the theory of shape recognition.) The connexion with singularities is that S(M) can be described alternatively as the levels bifurcation set of the family of distance-squared functions on M. In this paper a multi-germ version of the standard uniqueness result for versal unfoldings of potential functions is used to obtain a complete list of local normal forms (up to diffeomorphism) for the symmetry sets of generic plane curves, generic space curves, and generic surfaces in 3-space. For these cases the authors verify that M can be recovered as the envelope of a family of spheres centred at smooth points of S(M).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.