Femtosecond time-resolved infrared spectroscopy was used to study the formation of cyclobutane dimers in the all-thymine oligodeoxynucleotide (dT)18 by ultraviolet light at 272 nanometers. The appearance of marker bands in the time-resolved spectra indicates that the dimers are fully formed approximately 1 picosecond after ultraviolet excitation. The ultrafast appearance of this mutagenic photolesion points to an excited-state reaction that is approximately barrierless for bases that are properly oriented at the instant of light absorption. The low quantum yield of this photoreaction is proposed to result from infrequent conformational states in the unexcited polymer, revealing a strong link between conformation before light absorption and photodamage.
Ultraviolet (UV) radiation is a leading external hazard to the integrity of DNA. Exposure to UV radiation triggers a cascade of chemical reactions, and many molecular products (photolesions) have been isolated that are potentially dangerous for the cellular system. The early steps that take place after UV absorption by DNA have been studied by ultrafast spectroscopy. The review focuses on the evolution of excited electronic states, the formation of photolesions, and processes suppressing their formation. Emphasis is placed on lesions involving two thymine bases, such as the cyclobutane pyrimidine dimer, the (6-4) lesion, and its Dewar valence isomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.