A Semillon wine was bottled using 14 different closures: a screw‐cap type, two grades of conventional natural cork, two ‘technical cork’ closures (natural cork with a synthetic component), and 9 closures manufactured from synthetic polymer material. Closure performance was evaluated for physical aspects (e.g. extraction force and energy, change in closure diameter, and ease of closure reinsertion), and for wine composition and sensory properties. Wine under the screw cap closure retained the greatest concentration of sulfur dioxide (SO2) and ascorbic acid and had the slowest rate of browning. For other closures the trend of SO2 loss relative to the screw cap closure was apparent from an early stage of testing, and was most evident in the group of synthetic closures, intermediate in the conventional corks, and least evident in the technical cork closures. The loss of SO2 was in general highly correlated with an increase in wine browning (OD420) and the concentration of SO2 in the wine at six months was a strong predictor of future browning in the wine, particularly after eighteen months. Neither the concentration of dissolved oxygen at bottling (0.6–3.1 mg/L), nor the physical closure measures were predictors of future browning. For several closures upright storage tended to accelerate loss of SO2 from the wine, but in many cases this effect was marginal. The closures differed widely in regard to physical characteristics, and in general synthetic corks appeared least ‘consumer‐friendly’ in terms of extraction forces, energies, and ease of closure re‐insertion, but there was a trend for natural cork closures to exhibit larger variability in physical characteristics than technical cork and synthetic closures. Sensory analysis indicated large differences in wine flavour properties, with closures which tended to result in the best retention of free SO2 having wine sensory scores for ‘citrus’ that were generally high whilst scores for the attributes ‘developed’/‘oxidised’ were low. The situation was reversed for wine under closures that performed poorly in the retention of free SO2. It was found that below a critical level of free SO2 remaining in the wine, closures exhibited substantially higher ‘oxidised’ aroma. Whilst trichloroanisole‐type (TCA) taint was a noticeable problem for some cork and technical cork closures, any plastic‐type taint appeared not to be a problem with most synthetic closures.
Yeasts of the genus Dekkera and its anamorph Brettanomyces represent a significant spoilage issue for the global wine industry. Despite this, there is limited knowledge of genetic diversity and strain distribution within wine and winery-related environments. In this study, amplified fragment length polymorphism (AFLP) analysis was conducted on 244 Dekkera bruxellensis isolates from red wine made in 31 winemaking regions of Australia. The results indicated there were eight genotypes among the isolates, and three of these were commonly found across multiple winemaking regions. Analysis of 26S rRNA gene sequences provided further evidence of three common, conserved groups, whereas a phylogeny based upon the AFLP data demonstrated that the most common D. bruxellensis genotype (I) in Australian red wine was highly divergent from the D. bruxellensis type strain (CBS 74).
Background and Aims: The aim of this study was to assess the ability of experienced wine tasters to consistently assign quality scores to both red and white wines. Methods and Results: Wine quality scores were collected over a 15-year period from 571 experienced wine tasters. Consistency was measured by correlating the scores given to duplicate presentations of wines, calculating the pooled variation in repeat scores and assessing their ability to allocate duplicate presentations of the same wine to the same quality category. Although the majority of tasters showed statistically significant consistency, their individual abilities varied considerably and, in general, their ability to consistently score one wine type was a poor predictor of their consistency in scoring the other. Tasters were better able to allocate duplicate presentations of red wines to the same category than white wines, and red wine consistency was improved by combining the scores of three assessors as is done in the Australian wine show system. Conclusions: The ability of experienced wine tasters to consistently rate wines for overall quality varied greatly between individuals, but was generally better for red wines than for whites. Consistency was improved by combining the scores from a small team of tasters. Significance of the Study: The study demonstrates the need to conduct replicate tastings when assessing wines for quality as adequate taster repeatability cannot be guaranteed. Furthermore, using the combined score of a small team of tasters generally results in more consistent quality assessments.
The effect of red wine malolactic fermentation on the fate of seven fungicides (carbendazim, chlorothalonil, fenarimol, metalaxyl, oxadixyl, procymidone, and triadimenol) and three insecticides (carbaryl, chlorpyrifos, and dicofol) was investigated. After malolactic fermentation using Oenococcus oeni, which simulated common Australian enological conditions, the concentrations of the active compounds chlorpyrifos and dicofol were the most significantly reduced, whereas the concentrations of chlorothalonil and procymidone diminished only slightly. The effect of these pesticides on the activity of the bacteria was also studied. Dicofol had a major inhibitory effect on the catabolism of malic acid, whereas chlorothalonil, chlorpyrifos, and fenarimol had only a minor effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.