Self-healing materials are able to partially or completely heal damage inflicted on them, e.g., crack formation; it is anticipated that the original functionality can be restored. This article covers the design and generic principles of self-healing materials through a wide range of different material classes including metals, ceramics, concrete, and polymers. Recent key developments and future challenges in the field of self-healing materials are summarised, and generic, fundamental material-independent principles and mechanism are discussed and evaluated.
This paper offers a review of present achievements in the field of processing of ceramic-based materials with complex geometry using the main additive manufacturing (AM) technologies. In AM, the geometrical design of a desired ceramic-based component is combined with the materials design. In this way, the fabrication times and the product costs of ceramic-based parts with required properties can be substantially reduced. However, dimensional accuracy and surface finish still remain crucial features in today's AM due to the layer-by-layer formation of the parts. In spite of the fact that significant progress has been made in the development of feedstock materials, the most difficult limitations for AM technologies are the restrictions set by material selection for each AM method and aspects considering the inner architectural design of the manufactured parts. Hence, any future progress in the field of AM should be based on the improvement of the existing technologies or, alternatively, the development of new approaches with an emphasis on parts allowing the near-net formation of ceramic structures, while optimizing the design of new materials and of the part architecture.
Besides the excellent high-temperature mechanical properties, Si 3 N 4 and SiC based ceramics containing insulating or electrically conductive phase are attractive for their tunable dielectric properties, which may vary from electromagnetic (EM) wave transparent to absorption and shielding. Consequently, SiC, Si 3 N 4 , SiON, SiBN, SiBC, SiCN and SiBCN ceramics have attracted extensive interest in recent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.