The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PMLNBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin ␣3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level.
We have investigated the requirements for CRM1-mediated nuclear export and SUMO1 conjugation of the adenovirus E1B-55K protein during productive infection. Our data show that CRM1 is the major export receptor for E1B-55K in infected cells. Functional inactivation of the E1B-55K CRM1-dependent nuclear export signal (NES) or leptomycin B treatment causes an almost complete redistribution of the viral protein from the cytoplasm to the nucleus and its accumulation at the periphery of the viral replication centers. Interestingly, however, this nuclear restriction imposed on the wild type and the NES mutant protein is fully compensated by concurrent inactivation of the adjacent SUMO1 conjugation site. Moreover, the same mutation fully reverses defects of the NES mutant in the nucleocytoplasmic transport of Mre11 and proteasomal degradation of p53. These results show that nuclear export of E1B-55K in infected cells occurs via CRM1-dependent and -independent pathways and suggest that SUMO1 conjugation and deconjugation provide a molecular switch that commits E1B-55K to a CRM1-independent export pathway.he 55K product from subgroup C adenovirus type 5 (Ad5) early region 1B (E1B-55K) belongs to a group of adenoviral regulatory proteins required for maximal virus production in a number of different normal human cell strains and human tumor cell lines (reviewed in ref. 1). In wild-type (WT) Ad5-infected cells, E1B-55K controls several processes, including selective nuclear export of viral late RNA transcripts, inhibition of cellular mRNA transport, and proteasomal degradation of the tumor suppressor protein p53 and Mre11, a subunit of the Mre11/ Rad50/Nbs1 (MRN) DNA double-strand break repair complex (reviewed in ref.2). Collectively available data suggest that these multiple lytic activities result from oligomerization, posttranslational modifications such as phosphorylation, continuous nucleocytoplasmic shuttling, and interactions with a variety of cellular and viral factors, most importantly the protein product from early region 4 ORF 6 (E4orf6) (reviewed in ref. 3 and references therein).Over the past years, it has been well established that complex formation with E4orf6 increases the multifunctionality of the E1B protein. Several studies have shown that E4orf6 alters the intracellular distribution of E1B-55K in virus-infected cells directing the E1B protein to the nuclear matrix compartment (4) and the sites of viral RNA transcription and processing (5, 6). In addition, a substantial amount of novel information demonstrates that E4orf6 connects E1B-55K to components of a cellular E3 ubiquitin ligase, thereby allowing the proteasomal degradation of p53, Mre11, and Rad50 (reviewed in ref. 7). It appears that the latter activity also involves active nuclear export and cytoplasmic deposition of MRN subunits into aggresomes (8). Finally, several lines of evidence suggest that the E1B-55K/ E4orf6 complex directly participates in the selective nuclear export of late viral mRNAs through active nucleocytoplasmic shuttling (3) a...
Activation of the cellular DNA damage response is detrimental to adenovirus (Ad) infection. Ad has therefore evolved a number of strategies to inhibit ATM-and ATR-dependent signaling pathways during infection. Recent work suggests that the Ad5 E4orf3 protein prevents ATR activation through its ability to mislocalize the MRN complex. Here we provide evidence to indicate that Ad12 has evolved a different strategy from Ad5 to inhibit ATR. We show that Ad12 utilizes a CUL2/RBX1/elongin C-containing ubiquitin ligase to promote the proteasomal degradation of the ATR activator protein topoisomerase-IIβ-binding protein 1 (TOPBP1). Ad12 also uses this complex to degrade p53 during infection, in contrast to Ad5, which requires a CUL5-based ubiquitin ligase. Although Ad12-mediated degradation of p53 is dependent upon both E1B-55K and E4orf6, Ad12-mediated degradation of TOPBP1 is solely dependent on E4orf6. We propose that Ad12 E4orf6 has two principal activities: to recruit the CUL2-based ubiquitin ligase and to act as substrate receptor for TOPBP1. In support of the idea that Ad12 E4orf6 specifically prevents ATR activation during infection by targeting TOPBP1 for degradation, we demonstrate that Ad12 E4orf6 can inhibit the ATR-dependent phosphorylation of CHK1 in response to replication stress. Taken together, these data provide insights into how Ad modulates ATR signaling pathways during infection.DNA damage | cullin-RING ubiquitin ligases | DNA damage | proteasome
The adenoviral protein E3-14.7K (14.7K) is an inhibitor of TNF-induced apoptosis, but the molecular mechanism underlying this protective effect has not yet been explained exhaustively. TNF-mediated apoptosis is initiated by ligand-induced recruitment of TNF receptor-associated death domain (TRADD), Fas-associated death domain (FADD), and caspase-8 to the death domain of TNF receptor 1 (TNFR1), thereby establishing the death-inducing signaling complex (DISC). Here we report that adenovirus 14.7K protein inhibits ligandinduced TNFR1 internalization. Analysis of purified magnetically labeled TNFR1 complexes from murine and human cells stably transduced with 14.7K revealed that prevention of TNFR1 internalization resulted in inhibition of DISC formation. In contrast, 14.7K did not affect TNF-induced NF-κB activation via recruitment of receptor-interacting protein 1 (RIP-1) and TNF receptor-associated factor 2 (TRAF-2). Inhibition of endocytosis by 14.7K was effected by failure of coordinated temporal and spatial assembly of essential components of the endocytic machinery such as Rab5 and dynamin 2 at the site of the activated TNFR1. Furthermore, we found that the same TNF defense mechanisms were instrumental in protecting wild-type adenovirus-infected human cells expressing 14.7K. This study describes a new molecular mechanism implemented by a virus to escape immunosurveillance by selectively targeting TNFR1 endocytosis to prevent TNF-induced DISC formation.
Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.