Citrate is often used as a complexing agent to mobilize sorbed and precipitated uranium in both in situ and ex situ extraction of soils and nuclear reactor components. The biodegradability of U−citrate complexes is an important control over the potential migration of residual uranium after the extraction process is complete. In solutions buffered at pH 6−7, limited biodegradation of citrate is observed within 10 days with initial U:citrate molar ratios ranging from 1:2 to 1:8; however, over 99% of the citrate is biodegraded rapidly at pH 8−9. The increase of pH may have shifted the equilibrium speciation of uranium from (UO2−citrate)2 2- to (UO2)3(OH)7 1- and, consequently, raised the bioavailability of citrate. At pH 6−7, a significant amount of uranium is also observed to associate with biomass, whereas only a negligible amount is observed at pH 8−9. Our experimental results suggest that the residual concentration of uranium−citrate complexes left in the treated soils can be reduced rapidly if the soil water pH is held between 8 and 9 after the extraction processes.
Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf’s power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace “Sideroxydans” and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
The North Railroad Avenue Plume, discovered in 1989, contained chlorinated solvent groundwater plumes extending over 23.5 hectares (58 acres) and three hydrostratigraphic units. The source contaminant, tetrachloroethene, stemmed from release at a dry cleaner/laundromat business. The anaerobic biodegradation byproducts trichloroethene, isomers of dichloroethene (DCE), and vinyl chloride were detected in groundwater samples collected prior to remedial action. The impacted aquifers are the sole source drinking water aquifers for the communities near the site. Following the remedial investigation and feasibility study, the selected alternative for full-scale remedial action at the site was enhanced reductive dichlorination (ERD) focused on four treatment areas: the shallow source zone, the shallow hotspot area, the shallow downgradient area, and the deep zone. Pilot testing, which was conducted in the source zone and hotspot areas, is the subject of this paper. The primary objectives of the pilot test were to obtain the necessary information to select an ERD treatment formulation, dose, and frequency of dosing for use during full-scale remedial action, as well as to refine the site’s hydrogeologic conceptual site model and design parameters. Four (4) test cells, each of which contained well pairs of injection and downgradient extraction wells, were used to test ERD bio-amendment formulations: ethyl lactate, dairy whey, emulsified vegetable oil (EVO), and a combination of EVO and a hydrogen gas infusion. A conservative tracer, bromide, was added to the recirculation flow to record tracer breakthrough, peak, and dissipation at extraction wells. The results of these dipole tracer tests were used to reassess the hydraulic conductivity and hydrodynamic dispersity used in the remedial design. In addition to water quality analyses of contaminants and substrates, groundwater samples were also analyzed for biological analyses before, during, and after the addition of bioamendment. Analyses of phospholipid fatty acids and deoxyribonucleic acid (DNA) extracts from fresh groundwater samples informed decisions on the capacity for complete ERD without DCE stalling and tracked the shifts in the bacterial and archaeal taxonomy and phylogeny stemming from the addition of bioamendments. The pilot test concluded that EVO was the most suitable, considering (1) support of the native microbial consortia for ERD, (2) mechanics and hydraulics of the remediation system, and (3) sustainability/retention of the substrate in the subsurface. Along with EVO, the addition of a nutrient broth derived from brewery waste accelerated and sustained the desired conditions and microbial diversity and population levels. The pilot test results were also used to assess the utilization kinetics of the injected substrates based on total organic carbon (TOC) concentrations measured in the groundwater. After determining that substrate utilization followed Monod kinetics, a TOC threshold at 300 milligrams per liter, equivalent to approximately twice its half-saturation constant was established. Full scale treatment dosing and dose frequency were designed around this threshold, assuming the maximum substrate utilization would yield optimum ERD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.