A syndrome is described whose features, suggestive of primary mineralcorticoid excess, included hypertension, hypokalemia, low PRA, and responsiveness to spironolactone. Aldosterone levels were subnormal but as yet there has been no evidence of overproduction of other mineralocorticoids by chemical analysis or by bioassay of plasma and urinary extracts. The steroidal abnormalities that were observed involved peripheral matabolism rather than secretion. One patient exhibited a transient delay in reduction of the 3-keto group in the A ring, and both patients exhibited a decrease in the metabolism of cortisol to biologically inactive cortisone. This was shown by the marked decrease in the excretion of urinary metabolites bearing an 11-keto group and a decrease in the oxidation of 11 alpha-[3H]cortisol to tritiated water. The defect appeared not to be a deficiency of the 11 beta-oxidoreductase system itself, since the reverse reaction of conversion of cortisone to cortisol proceeded normally, but, rater, an alteration in the equilibrium position of 11 beta-oxidoreduction in favor of the reduced form. This was also expressed by a prolongation of the half-time of disappearance of cortisol. The decrease in the MCR permitted the maintenance of normal cortisol plasma levels and normal glucocorticoid function at a diminished rate of secretion. The decreased rate of conversion of cortisol to cortisone serves as a biochemical marker of this hypertensive syndrome.
The effects of insulin dependent diabetes mellitus (IDDM) on bone metabolism are still not well defined. We evaluated total bone mineral content (TBMC) and bone mineral density (BMD) at the lumbar spine and femoral neck using dual X-ray absorptiometry in 26 IDDM children (15 M, 11 F) with a mean chronological age of 12.1+/-3.1 yr (range 7.1-14.2 yr). Duration of diabetes was 4.3+/-2.9 yr, with a mean glycosylated hemoglobin of 9.2+/-0.4%. BMD and TBMC standard deviation scores (Z-scores) were determined by comparing our results to controls matched for age, sex and pubertal status. BMD and bone formation and resorption markers were determined at the beginning of the study and after one year of follow up. Mean lumbar spine Z-score was -1.06+/-0.2, with negative values in 24 of 26 children (92.6%); 14/26 patients (53.8%) had a lumbar spine Z-score >1.0 SD below the mean. Mean lumbar spine Z-score remained unchanged after one year of follow up (-1.02+/-0.3). No significant differences were obtained in femoral neck BMD or TBMC between groups. No correlation was observed between lumbar spine BMD Z-scores and duration of IDDM or degree of diabetes control, as assessed by the mean glycosylated hemoglobin. Daily urinary calcium excretion was elevated in our patients initially and after one year of follow up; however, no correlation was obtained between lumbar spine BMD and 24 h urinary calcium excretion. Carboxy-terminal propeptide of type 1 collagen values and levels of urinary cross-linked N-telopeptides of type 1 collagen in the diabetic children were significantly lower than those of the matched controls. Osteoblastic activity as assessed by serum osteocalcin and by the carboxy-terminal propeptide of type I collagen and bone resorption as measured by cross-linked N-telopeptides of type 1 collagen did not correlate with the lumbar spine Z-scores. When IDDM patients were subdivided into males and females and into children with more than or less than 2 yr duration of diabetes since diagnosis, no differences between groups were found. These results suggest that insulin dependent diabetes in children is associated with low bone turnover resulting in a deficit in bone mass which may be manifested as osteopenia in the growing bone. This defect is already present in trabecular bone early on in the disease and seems not to be related to glycemic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.