Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-D-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca 2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca 2+ channels. Intracellular infusion of NMDARs or Ca 2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocytedependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites.synapse heterogeneity | synaptic strength | astrocyte | hippocampal neuron | heterosynaptic plasticity A n enduring challenge in neurobiology is to understand how neurons set the strengths of their numerous synapses to efficiently process and store different information while maintaining network homeostasis. Electrophysiology and imaging approaches have revealed that synapses display a high degree of functional heterogeneity, even for those sharing the same axon or dendrite (1-3). The observation that synaptic strengths are heterogeneous, in turn, suggests that synapses can operate independently from one another. Accordingly, many studies have demonstrated the input-specificity of Hebbian and also of homeostatic forms of synaptic plasticity, where synaptic changes are restricted to inputs whose activity is altered (4-6). Nevertheless, such a synapse-autonomous behavior could potentially compromise the global network homeostasis by biasing the overall activity toward excitation or depression, and to overcome this issue, it has been proposed that distinct inputs cooperate by coordinating their relative strengths through heterosynaptic interactions (7-9). In support of the idea that synapses behave as interdependent rather than isolated functional units, the restriction of synaptic strength changes to active inputs has been demonstrated to break down at times, with the induction of synaptic plasticity in the stimulated input accompanying either synaptic depression or potentiation of the nonstimulated inputs (10-13). In a highly studied plasticity paradigm of long-term potentiation (LTP) at hippocampal Schaffer collateral-CA1 synapses, tetanic stimulation that induces LTP is often accompanied by presynaptic long-term depression (LTD) of nonstimulated Schaffer collat...
Induced pluripotent cell-derived motoneurons (iPSCMNs) are sought for use in cell replacement therapies and treatment strategies for motoneuron diseases such as amyotrophic lateral sclerosis (ALS). However, much remains unknown about the physiological properties of iPSCMNs and how they compare with endogenous spinal motoneurons or embryonic stem cell-derived motoneurons (ESCMNs). In the present study, we first used a proteomic approach and compared protein expression profiles between iPSCMNs and ESCMNs to show that Ͻ4% of the proteins identified were differentially regulated. Like ESCs, we found that mouse iPSCs treated with retinoic acid and a smoothened agonist differentiated into motoneurons expressing the LIM homeodomain protein Lhx3. When transplanted into the neural tube of developing chick embryos, iPSCMNs selectively targeted muscles normally innervated by Lhx3 motoneurons. In vitro studies showed that iPSCMNs form anatomically mature and functional neuromuscular junctions (NMJs) when cocultured with chick myofibers for several weeks. Electrophysiologically, iPSCMNs developed passive membrane and firing characteristic typical of postnatal motoneurons after several weeks in culture. Finally, iPSCMNs grafted into transected mouse tibial nerve projected axons to denervated gastrocnemius muscle fibers, where they formed functional NMJs, restored contractile force. and attenuated denervation atrophy. Together, iPSCMNs possess many of the same cellular and physiological characteristics as ESCMNs and endogenous spinal motoneurons. These results further justify using iPSCMNs as a source of motoneurons for cell replacement therapies and to study motoneuron diseases such as ALS.
Pluripotent stem cells can be directed to differentiate into motor neurons and assessed for functionality in vitro. An emerging application of this technique is to model genetically inherited diseases in differentiated motor neurons and to screen for new therapeutic targets. The neuromuscular junction (NMJ) is essential to the functionality of motor neurons and its dysfunction is a primary hallmark of motor neuron disease. However, mature NMJs that possess the functional and morphological characteristics of those formed in vivo have so far not been obtained in vitro. Here we describe the generation and analysis of mature NMJs formed between embryonic stem cell-derived motor neurons (ESCMNs) and primary myotubes. We compared the formation and maturation of NMJs generated by wild-type (NCAM+/+) ESCMNs to those generated by neural cell adhesion molecule null (NCAM-/-) ESCMNs in order to definitively test the sensitivity of this assay to identify synaptic pathology. We find that co-cultures using NCAM-/- ESCMNs replicate key in vivo NCAM-/- phenotypes and reveal that NCAM influences neuromuscular synaptogenesis by controlling the mode of synaptic vesicle endocytosis. Further, we could improve synapse formation and function in NCAM-/- co-cultures by chronic treatment with nifedipine, which blocks an immature synaptic vesicle recycling pathway. Together, our results demonstrate that this ESCMN/myofiber co-culture system is a highly sensitive bioassay for examining molecules postulated to regulate synaptic function and for screening therapeutics that will improve the function of compromised NMJs.
The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9 cre NCAM flx ). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM ϩ/ϩ ) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.