Molecular dynamic (MD) simulations of preassembled sodium dodecyl sulfate (SDS) micelles are carried out using three versions of GROMOS, as well as CHARMM36, OPLS-AA, and OPLS-UA force fields at different aggregation numbers and box sizes. The differences among force fields have little effect on the overall micelle structure of small aggregates of size 60 or 100, but for micelles of an aggregation number of 300 or higher, bicelle structures with ordered tails, rather than the more realistic rodlike or cylindrical micelles with disordered tails, occur when using versions of GROMOS45A3 or the OPLS-AA force fields that are adapted to model the sulfate head group atoms using methods given in the literature. We find that the Lennard-Jones (L-J) parameters for the sodium ions and the ionic oxygens of the SDS head group, as well as the water model, control the transition to bicelles, regardless of other L-J parameters. A closer binding of the sodium ions to the head group ionic oxygens screens the electrostatic repulsions more strongly, resulting in condensation of SDS head groups, leading to unphysical bicelles for GROMOS45A3 or the OPLS-AA force fields, when the aggregation number is large. A telltale sign that the sodium-oxygen interaction is too strong shows up in high nearest neighbor peaks (height >8 and height >20 for micelles with 60 and 100 surfactants, respectively) in the radial distribution functions (RDFs) of sodium ions to ionic oxygens. In the 100-surfactant micelles, the high RDF peak is accompanied by "crystal-like" layering of sodium ions onto the surface of the micelle. The distance between the sodium ions and micelle also depends on the number of waters binding to sodium ions in the presence of surfactant head groups, which depends on both the sodium ion and water models, and for the same sodium model increases as the water model is changed in the order: TIP4P, SPC/E, SPC, and TIP3P.
We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the DerjaguinÀLandauÀVerweyÀOverbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.
We present a coarse-grained molecular model of the surface of human hair, which consists of a supported lipid monolayer, in the MARTINI framework. Using coarse-grained molecular dynamics (MD) simulations, we...
Detailed knowledge of the self-assembly and phase behavior of pH-sensitive surfactants has implications in areas such as targeted drug delivery. Here we present a study of the formation of micelle and bilayer from lauric acids using a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with conformational sampling in explicit solvent and the pH-based replica-exchange protocol. We find that at high pH conditions a spherical micelle is formed, while at low pH conditions a bilayer is formed with a considerable degree of interdigitation. The mid-point of the phase transition is in good agreement with experiment. Preliminary investigation also reveals that the effect of counterions and salt screening shifts the transition mid-point and does not change the structure of the surfactant assembly. Based on these data we suggest that CpHMD simulations may be applied to computational design of surfactant-based nano devices in the future.
We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P < 2 partition primarily to the head group region and shrink micellar length, decreasing viscosity substantially, whereas more hydrophobic PRMs, with log P between 2 and 4, mix with the hydrophobic surfactant tails within the micellar core and slightly enhance the viscosity and micelle length, which is consistent with the packing argument. Large and very hydrophobic PRMs, with log P > 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.