Behavioral ecologists and economists emphasize that potential costs, as well as rewards, influence decision making. Although neuroscientists assume that frontal areas are central to decision making, the evidence is contradictory and the critical region remains unclear. Here it is shown that frontal lobe contributions to cost-benefit decision making can be understood by positing the existence of two independent systems that make decisions about delay and effort costs. Anterior cingulate cortex lesions affected how much effort rats decided to invest for rewards. Orbitofrontal cortical lesions affected how long rats decided to wait for rewards. The pattern of disruption suggested the deficit could be related to impaired associative learning. Impairments of the two systems may underlie apathetic and impulsive choice patterns in neurological and psychiatric illnesses. Although the existence of two systems is not predicted by economic accounts of decision making, our results suggest that delay and effort may exert distinct influences on decision making.
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as an heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principle neurotransmitter systems involved.
SummaryOrbitofrontal cortex (OFC) is widely held to be critical for flexibility in decision-making when established choice values change. OFC's role in such decision making was investigated in macaques performing dynamically changing three-armed bandit tasks. After selective OFC lesions, animals were impaired at discovering the identity of the highest value stimulus following reversals. However, this was not caused either by diminished behavioral flexibility or by insensitivity to reinforcement changes, but instead by paradoxical increases in switching between all stimuli. This pattern of choice behavior could be explained by a causal role for OFC in appropriate contingent learning, the process by which causal responsibility for a particular reward is assigned to a particular choice. After OFC lesions, animals' choice behavior no longer reflected the history of precise conjoint relationships between particular choices and particular rewards. Nonetheless, OFC-lesioned animals could still approximate choice-outcome associations using a recency-weighted history of choices and rewards.
Two ideas have dominated the neuropsychology of the orbitofrontal cortex (OFC). One holds that OFC regulates emotion and enhances behavioral flexibility through inhibitory control. The other ascribes to OFC a role in updating valuations based on current motivational states. Neuroimaging, neurophysiological and clinical observations are consistent with either or both hypotheses. Although these hypotheses are compatible in principle, the present results support the latter view of OFC function and argue against the former. We show that excitotoxic, fibersparing lesions confined to OFC in monkeys do not alter either behavioral flexibility, as measured by object reversal learning, or emotion regulation, as assessed by snake fear. A follow-up experiment indicates that previous reports of a loss of inhibitory control resulted from damage to nearby fiber tracts and not from OFC dysfunction. Thus, OFC plays a more specialized role in reward-guided behavior and emotion than currently thought, a function that includes value updating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.