Forty Newcastle disease virus strains and isolates could be placed in eight distinct antigenic groups on their ability to induce binding of nine mouse monoclonal antibodies, raised against strain NDV-Ulster 2C, to infected MDBK cells as assessed by an indirect immuno-peroxidase test. Viruses placed in each group appeared to share both biological and epizootiological properties.
The squirrel poxvirus (SQPV) is the probable mediator of apparent competition between the introduced invading gray squirrel (Sciurus carolinensis) and the red squirrel (Sciurus vulgaris) in the UK, and modeling studies have shown that this viral disease has had a significant impact on the decline of the red squirrel in the UK. However, given our limited understanding of the epidemiology of the disease, and more generally the effects of invasive species on parasite ecology, there is a need to investigate the transmission dynamics and the relative pathogenicity of the virus between species. We aimed to increase our knowledge of these processes through an empirical study in which we: (i) used pathological signs and transmission electron microscopy (TEM) to diagnose SQPV disease in red squirrels found dead during scanning surveillance between 1993 and 2005; (ii) detected antibody to SQPV using an enzyme-linked immunosorbent assay (ELISA) in the same animals; and (iii) mapped cases of the disease, and the gray squirrel distribution, using a geographical information system. We analyzed the distribution of cases of SQPV disease according to woodland type, a measure of squirrel density. SQPV disease occurred only in areas of England also inhabited by seropositive gray squirrels, and as the geographical range of gray squirrels expanded, SQPV disease occurred in these new gray squirrel habitats, supporting a role for the gray squirrel as a reservoir host of the virus. There was a delay between the establishment of invading gray squirrels and cases of the disease in red squirrels which implies gray squirrels must reach a threshold number or density before the virus is transmitted to red squirrels. The spatial and temporal trend in SQPV disease outbreaks suggested that SQPV disease will have a significant effect on Scottish populations of red squirrels within 25 years. The even spread of cases of disease across months suggested a direct rather than vector-borne transmission route is more likely. Eight juvenile and sub-adult free-living red squirrels apparently survived exposure to SQPV by mounting an immune response, the first evidence of immunity to SQPV in free-living red squirrels, which possibly suggests a changing host-parasite relationship and that the use of a vaccine may be an effective management tool to protect remnant red squirrel populations.
A series of transmission studies was conducted to investigate the aetiology, or aetiologies, of emerging fatal epidemic disease syndromes affecting the common frog (Rana temporaria) in Britain. The syndromes, characterized by skin ulceration or systemic haemorrhages, were induced upon exposure to lesion homogenates or cultured ranavirus. The re-isolation of ranavirus from experimentally affected frogs fulfilled Koch's postulates. Aeromonas hydrophila, previously associated with similar lesions, was not significant to disease development. Unexpectedly, disease outcomes were influenced by both the source of agent and the route of exposure, indicating that different ranaviruses with different tissue tropisms and pathogeneses (possibly similar to quasi-species in RNA virus populations) are circulating in the British common frog population. Our findings confirm that ranavirus disease has emerged as an important cause of amphibian mortality in Britain.
Newcastle disease (ND) virus (APMV-1) isolates submitted to the International Reference Laboratory for ND were characterised antigenically by their ability to cause binding of mouse monoclonal antibodies (mAbs) to cell cultures infected with the isolate. Since the availability of the mAbs 1526 viruses have been examined using a panel of nine mAbs and 818 with an extended panel of 26 mAbs. Using the nine mAb panel a total of 14 different patterns was seen and viruses grouped by the same pattern showed relationships with each other which were either biological, temporal or geographical or more than one of these. There was a marked tendency of viruses placed in the same group to show similar virulence for chickens. Extension of the panel to 26 mAbs produced 39 distinct patterns, although some of these were seen with only a single virus. Again, viruses inducing similar binding patterns shared similar properties and some binding patterns were specific for viruses causing discrete epizootics. Cluster analysis of the mAb binding patterns did not produce concise, discrete groupings, but did emphasise some relationships between virus properties and antigenicity. Examples of the usefulness of this approach were the ability to link two important outbreaks to the contamination of stored food by infected feral pigeons, and the demonstration of two separate viruses responsible for outbreaks in countries of the European Union during 1991 to 1994 thus preventing erroneous epizootiological tracing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.