The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T1-weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant (p < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant (p < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates (p < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.
This prospective controlled observational cohort study assessed the performance of a novel panel of serum microRNA (miRNA) biomarkers on indicators of concussion, subconcussive impacts, and neurocognitive function in collegiate football players over the playing season. Male collegiate student football athletes participating in a Division I Football Bowl Subdivision of the National Collegiate Athletic Association (NCAA) were enrolled. There were a total of 53 participants included in the study, 30 non-athlete control subjects and 23 male collegiate student football athletes. Neurocognitive assessments and blood samples were taken within the week before the athletic season began and within the week after the last game of the season and measured for a panel of pre-selected miRNA biomarkers. All the athletes had elevated levels of circulating miRNAs at the beginning of the season compared with control subjects (p < 0.001). Athletes with the lowest standard assessment of concussion (SAC) scores at the beginning of the season had the highest levels of miRNAs. The area under the curve (AUC) for predicting pre-season SAC scores were miR-195 (0.90), miR-20a (0.89), miR-151-5p (0.86), miR-505* (0.85), miR-9-3p (0.77), and miR-362-3p (0.76). In athletes with declining neurocognitive function over the season, concentrations of miRNAs increased over same period. There were significant negative correlations with miR-505* (p = 0.011), miR-30d (p = 0.007), miR-92 (p = 0.033), and (p = 0.008). The miRNAs correlating with balance problems were miR-505* (p = 0.007), miR-30d (p = 0.028), and miR-151-5p (p = 0.023). Those correlating with poor reaction times were miR-20a (0.043), miR-505* (p = 0.049), miR-30d (p = 0.031), miR-92 (p = 0.015), and miR-151-5p (p = 0.044). Select miRNAs were associated with baseline concussion assessments at the beginning of the season and with neurocognitive changes from pre to post-season in collegiate football players. Should these findings be replicated in a larger cohort of athletes, these markers could potentially serve as measures of neurocognitive status in athletes at risk for concussion and subconcussive injuries.
Background: Pediatric sports specialization, defined as intense year-round training in a single sport as a result of excluding other sports for more than 8 months per year, is common in the United States. There are demonstrated physical and social risks to early pediatric sports specialization (defined as before age 12 years). While thought to be needed to acquire appropriate experience and excel in a given sport, there remains little information on when athletes at the highest levels of their sport specialized. This study aimed to define when professional and collegiate ice hockey players specialized. Hypothesis: Early sports specialization before age 12 years will not be common among elite-level (professional and collegiate) ice hockey players. Study Design: Retrospective cross-sectional survey study. Level of Evidence: Level 3. Methods: Male professional and collegiate ice hockey players within 1 National Hockey League organization and 2 National Collegiate Athletic Association (NCAA) organizations who were 18 years of age or older completed a survey at training camp detailing their history of sports participation and specialization. Results: A total of 91 athletes participated in the study (mean age, 22.8 years; range, 18-39 years). The mean age at the start of any sports participation was 4.5 years, and the mean age of sports specialization was 14.3 years. The mean age of specialization in the professional group, the NCAA Division I group, and the NCAA Division III group was 14.1, 14.5, and 14.6 years, respectively. Conclusion: Early pediatric sports specialization is not common in elite-level (professional and collegiate) ice hockey players. Clinical Relevance: Early pediatric sports specialization before age 12 years is not necessary for athletic success in professional and collegiate ice hockey. This study provides further evidence supporting the recommendations of the American Medical Society for Sports Medicine, American Academy of Pediatrics, and American Orthopaedic Society for Sports Medicine against early sports specialization.
Overuse injuries of the lateral and medial elbow are common in sport, recreational activities, and occupational endeavors. They are commonly diagnosed as lateral and medial epicondylitis; however, the pathophysiology of these disorders demonstrates a lack of inflammation. Instead, angiofibroblastic degeneration is present, referred to as tendinosis. As such, a more appropriate terminology for these conditions is epicondylosis. This is a clinical diagnosis, and further investigations are only performed to rule out other clinical entities after conventional therapy has failed. Yet, most patients respond to conservative measures with physical therapy and counterforce bracing. Corticosteroid injections are effective for short-term pain control but have not demonstrated long-term benefit.
The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.