Cypoviruses and baculoviruses are notoriously difficult to eradicate because the virus particles are embedded in micrometre-sized protein crystals called polyhedra. The remarkable stability of polyhedra means that, like bacterial spores, these insect viruses remain infectious for years in soil. The environmental persistence of polyhedra is the cause of significant losses in silkworm cocoon harvests but has also been exploited against pests in biological alternatives to chemical insecticides. Although polyhedra have been extensively characterized since the early 1900s, their atomic organization remains elusive. Here we describe the 2 A crystal structure of both recombinant and infectious silkworm cypovirus polyhedra determined using crystals 5-12 micrometres in diameter purified from insect cells. These are the smallest crystals yet used for de novo X-ray protein structure determination. We found that polyhedra are made of trimers of the viral polyhedrin protein and contain nucleotides. Although the shape of these building blocks is reminiscent of some capsid trimers, polyhedrin has a new fold and has evolved to assemble in vivo into three-dimensional cubic crystals rather than icosahedral shells. The polyhedrin trimers are extensively cross-linked in polyhedra by non-covalent interactions and pack with an exquisite molecular complementarity similar to that of antigen-antibody complexes. The resulting ultrastable and sealed crystals shield the virus particles from environmental damage. The structure suggests that polyhedra can serve as the basis for the development of robust and versatile nanoparticles for biotechnological applications such as microarrays and biopesticides.
Accurate translation of genetic information into protein sequence depends on complete messenger RNA molecules. Truncated mRNAs cause synthesis of defective proteins, and arrest ribosomes at the end of their incomplete message. In bacteria, a hybrid RNA molecule that combines the functions of both transfer and messenger RNAs (called tmRNA) rescues stalled ribosomes, and targets aberrant, partially synthesized, proteins for proteolytic degradation. Here we report the 3.2-A-resolution structure of the tRNA-like domain of tmRNA (tmRNA(Delta)) in complex with small protein B (SmpB), a protein essential for biological functions of tmRNA. We find that the flexible RNA molecule adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the single-stranded D-loop in an extended conformation. The most striking feature of the structure of tmRNA(Delta) is a 90 degrees rotation of the TPsiC-arm around the helical axis. Owing to this unusual conformation, the SmpB-tmRNA(Delta) complex positioned into the A-site of the ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the elongation-factor binding region of the ribosome. On the basis of this structure, we propose a model for the binding of tmRNA on the ribosome.
The Escherichia coli disul®de bond isomerase DsbC rearranges incorrect disul®de bonds during oxidative protein folding. It is speci®cally activated by the periplasmic N-terminal domain (DsbDa) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC±DsbDa complex. The 2.3 A Ê crystal structure of the complex shows for the ®rst time the speci®c interactions between two thiol oxidoreductases. DsbDa is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDa reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDa active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm. Keywords: disul®de bond isomerase DsbC/electron transporter DsbD/oxidative protein folding/reaction intermediate/thiol oxidoreductase
Recognition of and discrimination between potential glyco-substrates is central to the function of galectins. Here we dissect the fundamental parameters responsible for such selectivity by the fungal representative, CGL2. The 2.1 A crystal structure of CGL2 and five substrate complexes reveal that this prototype galectin achieves increased substrate specificity by accommodating substituted oligosaccharides of the mammalian blood group A/B type in an extended binding cleft. Kinetic studies on wild-type and mutant CGL2 proteins demonstrate that the tetrameric organization is essential for functionality. The geometric constraints due to the orthogonal orientation of the four binding sites have important consequences on substrate binding and selectivity.
We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.