Head stabilization is fundamental for balance during locomotion but can be impaired in elderly or diseased populations. Previous studies have identified several parameters of head stability with possible diagnostic value in a laboratory setting. Recently, the ecological validity of measures obtained in such controlled contexts has been called into question. The aim of this study was to investigate the ecological validity of previously described parameters of head stabilization in a real-world setting. Ten healthy subjects participated in the study. Head and trunk movements of each subject were recorded with inertial measurement units (IMUs) for a period of at least 10 h. Periods of locomotion were extracted from the measurements and predominant frequencies, root mean squares (RMSs) and bout lengths were estimated. As parameters of head stabilization, attenuation coefficients (ACs), harmonic ratios (HRs), coherences, and phase differences were computed. Predominant frequencies were distributed tightly around 2 Hz and ACs, HRs, and coherences exhibited the highest values in this frequency range. All head stability parameters exhibited characteristics consistent with previous reports, although higher variances were observed. These results suggest that head stabilization is tuned to the 2 Hz fundamental frequency of locomotion and that previously described measures of head stability could generalize to a real-world setting. This is the first study to address the ecological validity of these measures, highlighting the potential use of head stability parameters as diagnostic tools or outcome measures for clinical trials. The low cost and ease of use of the IMU technology used in this study could additionally be of benefit for a clinical application.
Accurate and robust tracking of natural human head motion in natural environments is important for a number of applications including virtual and augmented reality, clinical diagnostics, as well as basic scientific research. IMU provide a versatile solution for recording inertial data including linear acceleration and angular velocity, but reconstructing head position is difficult or impossible. This problem can be solved by incorporating visual data using a technique known as visual-inertial simultaneous localization and mapping (VI-SLAM). A recently released commercial solution, the Intel RealSense T265, uses a proprietary VI-SLAM algorithm to estimate linear and angular position and velocity, but the performance of this device for tracking of natural human head motion in natural environments has not yet been comprehensively evaluated against gold-standard methods. In this study, we used a wide range of metrics to evaluate the performance of the T265 with different walking speeds in different environments, both indoor and outdoor, against two gold-standard methods, an optical tracking system and a so-called perambulator. Overall, we find that performance of the T265 relative to these gold-standard methods is most accurate for slow to normal walking speeds in small- to medium-sized environments. The suitability of this device for future scientific studies depends on the application; data presented here can be useful in making that determination.
Head orientation relative to gravity determines how gravity-dependent environmental structure is sampled by the visual system, as well as how gravity itself is sampled by the vestibular system. Therefore, both visual and vestibular sensory processing should be shaped by the statistics of head orientation relative to gravity. Here we report the statistics of human head orientation during unconstrained natural activities in humans for the first time, and we explore implications for models of vestibular processing. We find that the distribution of head pitch is more variable than head roll and that the head pitch distribution is asymmetrical with an over-representation of downward head pitch, consistent with ground-looking behavior. We further suggest that pitch and roll distributions can be used as empirical priors in a Bayesian framework to explain previously measured biases in perception of both roll and pitch. Gravitational and inertial acceleration stimulate the otoliths in an equivalent manner, so we also analyze the dynamics of human head orientation to better understand how knowledge of these dynamics can constrain solutions to the problem of gravitoinertial ambiguity. Gravitational acceleration dominates at low frequencies and inertial acceleration dominates at higher frequencies. The change in relative power of gravitational and inertial components as a function of frequency places empirical constraints on dynamic models of vestibular processing, including both frequency segregation and probabilistic internal model accounts. We conclude with a discussion of methodological considerations and scientific and applied domains that will benefit from continued measurement and analysis of natural head movements moving forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.