ObjectivePro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified.Methods and Results1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect.ConclusionWe identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine.
This report demonstrates that patients after treatment for acute respiratory distress syndrome and high-altitude cerebral edema show congruent cerebral injuries. Further investigation into the similarities of the causative conditions and neurologic consequences might reveal underlying pathophysiologic mechanisms and clinical implications of this observation.
BackgroundMethylprednisolone (MPD) is a rapid acting highly effective cluster headache preventive and also suppresses the recurrence of migraine attacks. Previously, we could demonstrate that elevated CGRP plasma levels in a cluster headache bout are normalized after a course of high dose corticosteroids. Here we assess whether MPD suppresses interleukin-1β (IL-1β)- and prostaglandin E2 (PGE2)-induced CGRP release in a cell culture model of trigeminal ganglia cells, which could account for the preventive effect in migraine and cluster headache. Metoprolol(MTP), a migraine preventive with a slow onset of action, was used for comparison.MethodsPrimary cultures of rat trigeminal ganglia were stimulated for 24 h with 10 ng/ml IL-1β or for 4 h with 10 μM PGE2 following the exposure to 10 or 100 μM MPD or 100 nM or 10 µM MTP for 45 min or 24 h. CGRP was determined by using a commercial enzyme immunoassay.ResultsMPD but not MTP blocked IL-1β-induced CGRP release from cultured trigeminal cells. PGE2-stimulated CGRP release from trigeminal ganglia cell culture was not affected by pre-stimulation whether with MPD or MTP.ConclusionMPD but not MTP suppresses cytokine (IL-1β)-induced CGRP release from trigeminal ganglia cells. We propose that blockade of cytokine mediated trigeminal activation may represent a potential mechanism of action that mediates the preventive effect of MTP on cluster headache and recurrent migraine attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.