The modelling of molecular excitation and dissociation processes relevant to astrochemistry requires the validation of theories by comparison with data generated from laboratory experimentation. The newly commissioned Ice Chamber for Astrophysics-Astrochemistry (ICA) allows for the study of astrophysical ice analogues and their evolution when subjected to energetic processing, thus simulating the processes and alterations interstellar icy grain mantles and icy outer Solar System bodies undergo. ICA is an ultra-high vacuum compatible chamber containing a series of IR-transparent substrates upon which the ice analogues may be deposited at temperatures of down to 20 K. Processing of the ices may be performed in one of three ways: (i) ion impacts with projectiles delivered by a 2 MV Tandetron-type accelerator, (ii) electron irradiation from a gun fitted directly to the chamber, and (iii) thermal processing across a temperature range of 20–300 K. The physico-chemical evolution of the ices is studied in situ using FTIR absorbance spectroscopy and quadrupole mass spectrometry. In this paper, we present an overview of the ICA facility with a focus on characterising the electron beams used for electron impact studies, as well as reporting the preliminary results obtained during electron irradiation and thermal processing of selected ices. Graphic Abstract
Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The in-situ changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.
The Ice Chamber for Astrophysics-Astrochemistry (ICA) is a new laboratory end station located at the Institute for Nuclear Research (Atomki) in Debrecen, Hungary. The ICA has been specifically designed for the study of the physico-chemical properties of astrophysical ice analogs and their chemical evolution when subjected to ionizing radiation and thermal processing. The ICA is an ultra-high-vacuum compatible chamber containing a series of IR-transparent substrates mounted on a copper holder connected to a closed-cycle cryostat capable of being cooled down to 20 K, itself mounted on a 360 ○ rotation stage and a z-linear manipulator. Ices are deposited onto the substrates via background deposition of dosed gases. The ice structure and chemical composition are monitored by means of FTIR absorbance spectroscopy in transmission mode, although the use of reflectance mode is possible by using metallic substrates. Pre-prepared ices may be processed in a variety of ways. A 2 MV Tandetron accelerator is capable of delivering a wide variety of high-energy ions into the ICA, which simulates ice processing by cosmic rays, solar wind, or magnetospheric ions. The ICA is also equipped with an electron gun that may be used for electron impact radiolysis of ices. Thermal processing of both deposited and processed ices may be monitored by means of both FTIR spectroscopy and quadrupole mass spectrometry. In this paper, we provide a detailed description of the ICA setup as well as an overview of the preliminary results obtained and future plans.
We report the energy and angular distribution of ejected electrons from CH 4 and H 2 O molecules impacted by 1 MeV H + , He + , and 650 keV N + ions. Spectra were measured at different observation angles, from 2 to 2000 eV. The obtained absolute double-differential electron-emission cross sections (DDCSs) were compared with the results of classical trajectory Monte Carlo (CTMC) and continuum distorted wave, eikonal initial state (CDW-EIS) calculations. For the bare H + projectile both theories show remarkable agreement with the experiment at all observed angles and energies. The CTMC results are in similarly good agreement with the DDCS spectra obtained for impact by dressed He + and N + ions, where screening effects and electron loss from the projectile gain importance. The CDW-EIS calculations slightly overestimate the electron loss for 1 MeV He + impact, and overestimate both the target and projectile ionization at low emitted electron energies for 650 keV N + impact. The contribution of multiple electron scattering by the projectile and target centers (Fermi shuttle) dominates the N + -impact spectra at higher electron energies, and it is well reproduced by the nonperturbative CTMC calculations. The contributions of different processes in medium-velocity collisions of dressed ions with molecules are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.