We provide a tight analysis of Grover's recent algorithm for quantum database searching. We give a simple closed-form formula for the probability of success after any given number of iterations of the algorithm. This allows us to determine the number of iterations necessary to achieve almost certainty of finding the answer. Furthermore, we analyse the behaviour of the algorithm when the element to be found appears more than once in the table and we provide a new algorithm to find such an element even when the number of solutions is not known ahead of time. Using techniques from Shor's quantum factoring algorithm in addition to Grover's approach, we introduce a new technique for approximate quantum counting, which allows to estimate the number of solutions. Finally we provide a lower bound on the efficiency of any possible quantum database searching algorithm and we show that Grover's algorithm nearly comes within a factor 2 of being optimal in terms of the number of probes required in the table.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.