Background: Coronavirus disease 2019 (COVID-19) is associated with diffuse lung damage. Corticosteroids may modulate immune-mediated lung injury and reducing progression to respiratory failure and death. Methods: The Randomised Evaluation of COVID-19 therapy (RECOVERY) trial is a randomized, controlled, open-label, adaptive, platform trial comparing a range of possible treatments with usual care in patients hospitalized with COVID-19. We report the preliminary results for the comparison of dexamethasone 6 mg given once daily for up to ten days vs. usual care alone. The primary outcome was 28-day mortality. Results: 2104 patients randomly allocated to receive dexamethasone were compared with 4321 patients concurrently allocated to usual care. Overall, 454 (21.6%) patients allocated dexamethasone and 1065 (24.6%) patients allocated usual care died within 28 days (age-adjusted rate ratio [RR] 0.83; 95% confidence interval [CI] 0.74 to 0.92; P<0.001). The proportional and absolute mortality rate reductions varied significantly depending on level of respiratory support at randomization (test for trend p<0.001): Dexamethasone reduced deaths by one-third in patients receiving invasive mechanical ventilation (29.0% vs. 40.7%, RR 0.65 [95% CI 0.51 to 0.82]; p<0.001), by one-fifth in patients receiving oxygen without invasive mechanical ventilation (21.5% vs. 25.0%, RR 0.80 [95% CI 0.70 to 0.92]; p=0.002), but did not reduce mortality in patients not receiving respiratory support at randomization (17.0% vs. 13.2%, RR 1.22 [95% CI 0.93 to 1.61]; p=0.14). Conclusions: In patients hospitalized with COVID-19, dexamethasone reduced 28-day mortality among those receiving invasive mechanical ventilation or oxygen at randomization, but not among patients not receiving respiratory support.
Objective To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. Design Population based cohort study. Setting and participants QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. Main outcome measures The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. Results 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R 2 ); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell’s C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. Conclusion The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves.
We introduce the antibody landscape, a method for the quantitative analysis of antibody-mediated immunity to antigenically variable pathogens, achieved by accounting for antigenic variation among pathogen strains. We generated antibody landscapes to study immune profiles covering 43 years of influenza A/H3N2 virus evolution for 69 individuals monitored for infection over six years and for 225 individuals pre- and post-vaccination. On infection and vaccination titers increased broadly, including previously encountered viruses far beyond the extent of cross-reactivity observed after a primary infection. We explored implications for vaccination, and found that use of an antigenically advanced virus had the dual benefit of inducing antibodies against both advanced and previous antigenic clusters. These results indicate that pre-emptive vaccine updates may improve influenza vaccine efficacy in previously-exposed individuals.
BackgroundCurrent understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite.Methodology and FindingsWe first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR.Conclusions and SignificanceThis detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.