A series of negatively charged alpha-helical peptides of the general formula fluorenylmethoxycarbonyl (Fmoc)-D(x)A(y)K(z) were synthesized, where x and z were 1, 2, or 3 and y was 10, 14, 18, or 22. The translocation of the peptides through single pores, which were self-assembled into lipid membranes, was analyzed by measuring the current blockade i(block) and the duration t(block). The pores were either alpha-hemolysin, which has a wide vestibule leading into the pore, or aerolysin, which has no vestibule but has a longer pore of a similar diameter. Many thousands of events were measured for each peptide with each pore, and they could be assigned to two types: bumping events (type I) have a small i(block) and long t(block), and translocation events (type II) have a larger i(block) and shorter t(block). For type-II events, both i(block) and t(block) increase with the length of the peptides on both pores tested. The dipole moment and the net charge of each peptide has a major effect on the transport characteristics. The ratio of type-II/type-I events increases as the dipole moment increases, and uncharged peptides gave mostly type-I events. The structural differences between the two nanopores were reflected in the characteristic values of i(block), and in particular, the vestibule of alpha-hemolysin helps to orient the peptides for translocation. Overall, the results demonstrate that the nanopore technology can provide useful structural information but peptide sequencing will require further improvements in the design of the pores.
HPr is a small protein that must unfold to translocate the α‐hemolysin pore (see image). Single amino acid substitutions can cause large changes to the translocation parameters. A conservative mutation is sufficient to alter the event profile; either the mutant must unfold differently or it must interact with the pore differently. A negatively charged mutant is driven through the pore, which facilitates unfolding.
FhuA belongs to a family of specific siderophore transport systems located in the outer membrane of Escherichia coli. The energy required for the transport process is provided by the proton motive force of the cytoplasmic membrane and is transmitted to FhuA by the protein TonB. Although the structure of full-length TonB is not known, the structure of the last 77 residues of a fragment composed of the 86 C-terminal amino acids was recently solved and shows an intertwined dimer (Chang, C., Mooser, A., Pluckthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540). We analyzed the ability of truncated C-terminal TonB fragments of different lengths (77, 86, 96, 106, 116, and 126 amino acid residues, respectively) to bind to the receptor FhuA. Only the shortest TonB fragment, TonB-77, could not effectively interact with FhuA. We have also observed that the fragments TonB-77 and TonB-86 form homodimers in solution, whereas the longer fragments remain monomeric. TonB fragments that bind to FhuA in vitro also inhibit ferrichrome uptake via FhuA in vivo and protect cells against attack by bacteriophage ⌽80.
Vibrio vulnificus utilizes the type II secretion system (T2SS), culminating in a megadalton outer membrane complex called the secretin, to translocate extracellular proteins from the periplasmic space across the outer membrane. In Aeromonas hydrophila, the general secretion pathway proteins ExeA and ExeB form an inner membrane complex which interacts with peptidoglycan and is required for the assembly of the secretin composed of ExeD. In V. vulnificus, these two proteins are fused into one protein, EpsAB. Here, the crystal structure of a periplasmic domain of EpsAB (amino acids 333-584) solved by SAD phasing is presented. The crystals belonged to space group C2 and diffracted to 1.55 Å resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.