The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported. The iridium complexes have two cyclometalated (C(**)N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C(**)N2Ir(LX). The C(**)N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all beta-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. The majority of the C(**)N2Ir(acac) complexes phosphoresce with high quantum efficiencies (solution quantum yields, 0.1-0.6), and microsecond lifetimes (e.g., 1-14 micros). The strongly allowed phosphorescence in these complexes is the result of significant spin-orbit coupling of the Ir center. The lowest energy (emissive) excited state in these C(**)N2Ir(acac) complexes is a mixture of (3)MLCT and (3)(pi-pi) states. By choosing the appropriate C(**)N ligand, C(**)N2Ir(acac) complexes can be prepared which emit in any color from green to red. Simple, systematic changes in the C(**)N ligands, which lead to bathochromic shifts of the free ligands, lead to similar bathochromic shifts in the Ir complexes of the same ligands, consistent with "C(**)N2Ir"-centered emission. Three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs). The three Ir complexes, i.e., bis(2-phenylpyridinato-N,C2')iridium(acetylacetonate) [ppy2Ir(acac)], bis(2-phenyl benzothiozolato-N,C2')iridium(acetylacetonate) [bt2Ir(acac)], and bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium(acetylacetonate) [btp2Ir(acac)], were doped into the emissive region of multilayer, vapor-deposited OLEDs. The ppy2Ir(acac)-, bt2Ir(acac)-, and btp2Ir(acac)-based OLEDs give green, yellow, and red electroluminescence, respectively, with very similar current-voltage characteristics. The OLEDs give high external quantum efficiencies, ranging from 6 to 12.3%, with the ppy2Ir(acac) giving the highest efficiency (12.3%, 38 lm/W, >50 Cd/A). The btp2Ir(acac)-based device gives saturated red emission with a quantum efficiency of 6.5% and a luminance efficiency of 2.2 lm/W. These C(**)N2Ir(acac)-doped OLEDs show some of the highest efficiencies reported for organic light emitting diodes. The high efficiencies result from efficient trapping and radiative relaxation of the singlet and triplet excitons formed in the electroluminescent process.
The synthesis, structures, electrochemistry, and photophysics of a series of facial (fac) and meridional (mer) tris-cyclometalated Ir(III) complexes are reported. The complexes have the general formula Ir(C'N)(3) [where C'N is a monoanionic cyclometalating ligand; 2-phenylpyridyl (ppy), 2-(p-tolyl)pyridyl (tpy), 2-(4,6-difluorophenyl)pyridyl (46dfppy), 1-phenylpyrazolyl (ppz), 1-(4,6-difluorophenyl)pyrazolyl (46dfppz), or 1-(4-trifluoromethylphenyl)pyrazolyl (tfmppz)]. Reaction of the dichloro-bridged dimers [(C'N(2)Ir(mu-Cl)(2)Ir(C'N)(2)] with 2 equiv of HC( wedge )N at 140-150 degrees C forms the corresponding meridional isomer, while higher reaction temperatures give predominantly the facial isomer. Both facial and meridional isomers can be obtained in good yield (>70%). The meridional isomer of Ir(tpy)(3) and facial and meridional isomers of Ir(ppz)(3) and Ir(tfmppz)(3) have been structurally characterized using X-ray crystallography. The facial isomers have near identical bond lengths (av Ir-C = 2.018 A, av Ir-N = 2.123 A) and angles. The three meridional isomers have the expected bond length alternations for the differing trans influences of phenyl and pyridyl/pyrazolyl ligands. Bonds that are trans to phenyl groups are longer (Ir-C av = 2.071 A, Ir-N av = 2.031 A) than when they are trans to heterocyclic groups. The Ir-C and Ir-N bonds with trans N and C, respectively, have bond lengths very similar to those observed for the corresponding facial isomers. DFT calculations of both the singlet (ground) and the triplet states of the compounds suggest that the HOMO levels are a mixture of Ir and ligand orbitals, while the LUMO is predominantly ligand-based. All of the complexes show reversible oxidation between 0.3 and 0.8 V, versus Fc/Fc(+). The meridional isomers are easier to oxidize by ca. 50-100 mV. The phenylpyridyl-based complexes have reduction potentials between -2.5 and -2.8 V, whereas the phenylpyrazolyl-based complexes exhibit no reduction up to the solvent limit of -3.0 V. All of the compounds have intense absorption bands in the UV region assigned into (1)(pi --> pi) transitions and weaker MLCT (metal-to-ligand charge transfer) transitions that extend to the visible region. The MLCT transitions of the pyrazolyl-based complexes are hypsochromically shifted relative to those of the pyridyl-based compounds. The phenylpyridyl-based Ir(III) tris-cyclometalates exhibit intense emission both at room temperature and at 77 K, whereas the phenylpyrazolyl-based derivatives emit strongly only at 77 K. The emission energies and lifetimes of the phenylpyridyl-based complexes (450-550 nm, 2-6 micros) and phenylpyrazolyl-based compounds (390-440 nm, 14-33 micros) are characteristic for a mixed ligand-centered/MLCT excited state. The meridional isomers for both pyridyl and pyrazolyl-based cyclometalates show markedly different spectroscopic properties than do the facial forms. Isolated samples of mer-Ir(C( wedge )N)(3) complexes can be thermally and photochemically converted to facial forms, indicating that the me...
The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported. The complexes have the general structure C(wedge)NPt(O(wedge)O),where C(wedge)N is a monoanionic cyclometalating ligand (e.g., 2-phenylpyridyl, 2-(2'-thienyl)pyridyl, 2-(4,6-difluorophenyl)pyridyl, etc.) and O(wedge)O is a beta-diketonato ligand. Reaction of K(2)PtCl(4) with a HC(wedge)N ligand precursor forms the chloride-bridged dimer, C(wedge)NPt(mu-Cl)(2)PtC(wedge)N, which is cleaved with beta-diketones such as acetyl acetone (acacH) and dipivaloylmethane (dpmH) to give the corresponding monomeric C(wedge)NPt(O(wedge)O) complex. The thpyPt(dpm) (thpy = 2-(2'-thienyl)pyridyl) complex has been characterized using X-ray crystallography. The bond lengths and angles for this complex are similar to those of related cyclometalated Pt complexes. There are two independent molecular dimers in the asymmetric unit, with intermolecular spacings of 3.45 and 3.56 A, consistent with moderate pi-pi interactions and no evident Pt-Pt interactions. Most of the C(wedge)NPt(O(wedge)O) complexes display a single reversible reduction wave between -1.9 and -2.6 V (vs Cp(2)Fe/Cp(2)Fe(+)), assigned to largely C(wedge)N ligand based reduction, and an irreversible oxidation, assigned to predominantly Pt based oxidation. DFT calculations were carried out on both the ground (singlet) and excited (triplet) states of these complexes. The HOMO levels are a mixture of Pt and ligand orbitals, while the LUMO is predominantly C(wedge)N ligand based. The emission characteristics of these complexes are governed by the nature of the organometallic cyclometalating ligand allowing the emission to be tuned throughout the visible spectrum. Twenty-three different C(wedge)N ligands have been examined, which gave emission lambda(max) values ranging from 456 to 600 nm. Well-resolved vibronic fine structure is observed in all of the emission spectra (room temperature and 77 K). Strong spin-orbit coupling of the platinum atom allows for the formally forbidden mixing of the (1)MLCT with the (3)MCLT and (3)pi-pi states. This mixing leads to high emission quantum efficiencies (0.02-0.25) and lifetimes on the order of microseconds for the platinum complexes.
The preparation, photophysics, and solid state structures of octahedral organometallic Ir complexes with several different cyclometalated ligands are reported. IrCl3.nH2O cleanly cyclometalates a number of different compounds (i.e., 2-phenylpyridine, 2-(p-tolyl)pyridine, benzoquinoline, 2-phenylbenzothiazole, 2-(1-naphthyl)benzothiazole, and 2-phenylquinoline), forming the corresponding chloride-bridged dimers, CwedgeN2Ir(mu-Cl)2IrCwedgeN2 (CwedgeNis a cyclometalated ligand) in good yield. These chloride-bridged dimers react with acetyl acetone (acacH) and other bidentate, monoanionic ligands such as picolinic acid (picH) and N-methylsalicylimine (salH), to give monomeric CwedgeN2Ir(LX) complexes (LX = acac, pic, sal). The emission spectra of these complexes are largely governed by the nature of the cyclometalating ligand, leading to lambda(max) values from 510 to 606 nm for the complexes reported here. The strong spin-orbit coupling of iridium mixes the formally forbidden 3MLCT and 3pi-pi* transitions with the allowed 1MLCT, leading to a strong phosphorescence with good quantum efficiencies (0.1-0.4) and room temperature lifetimes in the microsecond regime. The emission spectra of the CwedgeN2Ir(LX) complexes are surprisingly similar to the fac-IrCwedgeN3 complex of the same ligand, even though the structures of the two complexes are markedly different. The crystal structures of two of the CwedgeN2Ir(acac) complexes (i.e., CwedgeN = ppy and tpy) have been determined. Both complexes show cis-C,C', trans-N,N' disposition of the two cyclometalated ligands, similar to the structures reported for other complexes with a "CwedgeN2Ir" fragment. NMR data (1H and 13C) support a similar structure for all of the CwedgeN2Ir(LX) complexes. Close intermolecular contacts in both (ppy)2Ir(acac) and (tpy)2Ir(acac) lead to significantly red shifted emission spectra for crystalline samples of the ppy and tpy complexes relative to their solution spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.