Previous work has shown that ischemia-reperfusion (IR) injury (IRI) is dependent on CD4+ T cells from naive mice acting within 24 h. We hypothesize that NKT cells are key participants in the early innate response in IRI. Kidneys from C57BL/6 mice were subjected to IRI (0.5, 1, 3, and 24 h of reperfusion). After 30 min of reperfusion, we observed a significant increase in CD4+ cells (145% of control) from single-cell kidney suspensions as measured by flow cytometry. A significant fraction of CD4+ T cells expressed the activation marker, CD69+, and adhesion molecule, LFA-1high. Three hours after reperfusion, kidney IFN-γ-producing cells were comprised largely of GR-1+CD11b+ neutrophils, but also contained CD1d-restricted NKT cells. Kidney IRI in mice administered Abs to block CD1d, or deplete NKT cells or in mice deficient of NKT cells (Jα18−/−), was markedly attenuated. These effects were associated with a significant decrease in renal infiltration and, in activation of NKT cells, and a decrease in IFN-γ-producing neutrophils. The results support the essential role of NKT cells and neutrophils in the innate immune response of renal IRI by mediating neutrophil infiltration and production of IFN-γ.
Chemokines and their receptors such as CCR2 and CX3CR1 mediate leukocyte adhesion and migration into injured tissue. To further define mechanisms of monocyte trafficking during kidney injury we identified two groups of F4/80-positive cells (F4/80low and F4/80high) in the normal mouse kidney that phenotypically correspond to macrophages and dendritic cells, respectively. Following ischemia and 3 h of reperfusion, there was a large influx of F4/80low inflamed monocytes, but not dendritic cells, into the kidney. These monocytes produced TNF-α, IL-6, IL-1 α and IL-12. Ischemic injury induced in CCR2−/− mice or in CCR2+/+ mice, made chimeric with CCR2−/− bone marrow, resulted in lower plasma creatinine levels and their kidneys had fewer infiltrated F4/80low macrophages compared to control mice. CX3CR1 expression contributed to monocyte recruitment into inflamed kidneys, as ischemic injury in CX3CR1−/− mice was reduced, with fewer F4/80low macrophages than controls. Monocytes transferred from CCR2+/+ or CX3CR1+/− mice migrated into reperfused kidneys better than monocytes from either CCR2−/− or CX3CR1−/− mice. Adoptive transfer of monocytes from CCR2+/+ mice, but not CCR2−/− mice, reversed the protective effect in CCR2−/− mice following ischemia-reperfusion. Egress of CD11b+Ly6Chigh monocytes from blood into inflamed kidneys was CCR2- and CX3CR1-dependent. Our study shows that inflamed monocyte migration, through CCR2- and CX3CR1-dependent mechanisms, plays a critical role in kidney injury following ischemia reperfusion.
Regulatory T cells (Tregs) suppress the innate inflammation associated with kidney ischemia-reperfusion injury (IRI), but the mechanism is not well understood. Tregs express CD73, the final enzyme involved in the production of extracellular adenosine, and activation of the adenosine 2A receptor (A 2A R) on immune cells suppresses inflammation and preserves kidney function after IRI. We hypothesized that Treggenerated adenosine is required to block innate immune responses in kidney IRI and that the Treggenerated adenosine would signal through A 2A Rs on inflammatory cells and, in an autocrine manner, on Tregs themselves. We found that adoptively transferred wild-type Tregs protected wild-type mice from kidney IRI, but the absence of adenosine generation (CD73-deficient Tregs) or adenosine responsiveness (A 2A R-deficient Tregs) led to inhibition of Treg function. Pharmacologic stimulation of A 2A R before adoptive transfer augmented the ability of wild-type and CD73-deficient Tregs to suppress kidney IRI. Microarray analysis and flow cytometry revealed that A 2A R activation enhanced surface PD-1 expression on Tregs in the absence of any other activation signal. Treatment of Tregs with a PD-1 blocking antibody before adoptive transfer reversed their protective effects, even if pretreated with an A 2A R agonist. Taken together, these results demonstrate that the simultaneous ability to generate and respond to adenosine is required for Tregs to suppress innate immune responses in IRI through a PD-1-dependent mechanism.
It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.