Knowledge of aquaculture–environment interactions is essential for the development of a sustainable aquaculture industry and efficient marine spatial planning. The effects of fish and shellfish farming on sessile wild populations, particularly infauna, have been studied intensively. Mobile fauna, including crustaceans, fish, birds and marine mammals, also interact with aquaculture operations, but the interactions are more complex and these animals may be attracted to (attraction) or show an aversion to (repulsion) farm operations with various degrees of effects. This review outlines the main mechanisms and effects of attraction and repulsion of wild animals to/from marine finfish cage and bivalve aquaculture, with a focus on effects on fisheries‐related species. Effects considered in this review include those related to the provision of physical structure (farm infrastructure acting as fish aggregating devices (FADs) or artificial reefs (ARs), the provision of food (e.g. farmed animals, waste feed and faeces, fouling organisms associated with farm structures) and some farm activities (e.g. boating, cleaning). The reviews show that the distribution of mobile organisms associated with farming structures varies over various spatial (vertical and horizontal) and temporal scales (season, feeding time, day/night period). Attraction/repulsion mechanisms have a variety of direct and indirect effects on wild organisms at the level of individuals and populations and may have implication for the management of fisheries species and the ecosystem in the context of marine spatial planning. This review revealed considerable uncertainties regarding the long‐term and ecosystem‐wide consequences of these interactions. The use of modelling may help better understand consequences, but long‐term studies are necessary to better elucidate effects.
The combined influences of intensive mussel aquaculture and watershed nutrient inputs on nitrogen dynamics in Tracadie Bay, Prince Edward Island, Canada, were examined using a nitrogen budget and an ecosystem model. Budget calculations, and inputs and parameters for the model were based on extensive field data. Both approaches showed that mussel aquaculture has a dominant influence on all aspects of the nitrogen cycle and dramatically alters pathways by which nitrogen reaches the phytoplankton and benthos. A large proportion of phytoplankton production is supported by land-derived nitrogen and this anthropogenic input is important for sustaining existing levels of mussel production. The amount of nitrogen removed in the mussel harvest is small compared with agricultural nitrogen inputs and the amounts excreted and biodeposited on the seabed. Mussel biodeposition greatly increases the flux of nitrogen to the benthos, with potentially serious eutrophication impacts. Results from the observation-based nitrogen budget and dynamic model were compared and both support the above conclusions. However, the ability of the model to test different scenarios and to provide additional information (e.g. fluxes) over a finer spatial scale led to insights unattainable with a nitrogen budget. For example, food appears to be less available to mussels at the head of the Bay than at the mouth, despite the lower density of grow-out sites in the former location. The number of fundamental ecosystem processes influenced by the mussels and the complexity of their interactions make it difficult to predict the effects of mussels on many ecosystem properties without resorting to a model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.