Propp & Wilson (1996) described a protocol, called coupling from the past, for exact sampling from a target distribution using a coupled Markov chain Monte Carlo algorithm. In this paper we extend coupling from the past to various MCMC samplers on a continuous state space; rather than following the monotone sampling device of Propp & Wilson, our approach uses methods related to gamma-coupling and rejection sampling to simulate the chain, and direct accounting of sample paths.
The need to explore model uncertainty in linear regression models with many predictors has motivated improvements in Markov chain Monte Carlo sampling algorithms for Bayesian variable selection. Currently used sampling algorithms for Bayesian variable selection may perform poorly when there are severe multicollinearities among the predictors. This article describes a new sampling method based on an analogy with the SwendsenWang algorithm for the Ising model, and which can give substantial improvements over alternative sampling schemes in the presence of multicollinearity. In linear regression with a given set of potential predictors we can index possible models by a binary parameter vector that indicates which of the predictors are included or excluded. By thinking of the posterior distribution of this parameter as a binary spatial field, we can use auxiliary variable methods inspired by the Swendsen-Wang algorithm for the Ising model to sample from the posterior where dependence among parameters is reduced by conditioning on auxiliary variables. Performance of the method is described for both simulated and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.