Aggregation in traditional database systems is performed in batch mode: a query is submitted, the system processes a large volume of data over a long period of time, and, eventually, the final answer is returned. This archaic approach is frustrating to users and has been abandoned in most other areas of computing. In this paper we propose a new
online aggregation
interface that permits users to both observe the progress of their aggregation queries and control execution on the fly. After outlining usability and performance requirements for a system supporting online aggregation, we present a suite of techniques that extend a database system to meet these requirements. These include methods for returning the output in random order, for providing control over the relative rate at which different aggregates are computed, and for computing running confidence intervals. Finally, we report on an initial implementation of online aggregation in POSTGRES.
Many commercialdatabase systems maintain histograms to summarize the contents of relations and permit efficient estimation of query result sizes and access plan costs. Although several types of histograms have been proposed in the past, there has never been a systematic study of all histogram aspects,the available choices for each aspect, and the impact of such choices on histogram effectiveness. In this paper, we provide a taxonomy of histograms that captures all previously proposed histogram types and indicates many new possibilities. We introduce novel choices for several of the taxonomy dimensions, and derive new histogram types by combining choices in effective ways. We also show how sampling techniques can be used to reduce the cost of histogram construction. Finally, we present results from an empirtcal study of the proposed histogram types used in selectivity estimation of range predicates and identify the histogram types that have the best overall performance.
Aggregation in traditional datab=e systems is performed in batch mode: a query is submitted, the system processes a large volume of data over a long period of time, and, eventually, the final answer is returned. This archaic approach is frustrating to users and has been abandoned in most other areas of computing. In this paper we propose a new online aggregation interface that permits users to both observe the progress of their aggregation queries and control execution on the fly. After outlining usability and performance requirements for a system supporting online aggregation, we present a suite of techniques that extend a database system to meet these requirements, These include methods for returning the output in random order, for providing control over the relative rate at which different aggregates are computed, and for computing running confidence intervals. Finally, we report on an initial implementation of online aggregation in POSTGRES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.