Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX),which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3. H3K27ac is present at high levels in early embryos and declines after 4 hours as H3K27me3 increases. Knockdown of E(Z)decreases H3K27me3 and increases H3K27ac in bulk histones and at the promoter of the repressed Polycomb target gene abd-A, suggesting that these indeed constitute alternative modifications at some H3K27 sites. Moderate overexpression of CBP in vivo causes a global increase in H3K27ac and a decrease in H3K27me3, and strongly enhances Polycomb mutant phenotypes. We also show that TRX is required for H3K27 acetylation. TRX overexpression also causes an increase in H3K27ac and a concomitant decrease in H3K27me3 and leads to defects in Polycomb silencing. Chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) analysis reveals that H3K27ac and H3K27me3 are mutually exclusive and that H3K27ac and H3K4me3 signals coincide at most sites. We propose that TRX-dependent acetylation of H3K27 by CBP prevents H3K27me3 at Polycomb target genes and constitutes a key part of the molecular mechanism by which TRX antagonizes or prevents Polycomb silencing.
The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180-and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180؉p105؉p55 dCAF-1 complex is active for DNA replicationcoupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and the Drosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo in Drosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.
Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are key epigenetic regulators of global transcription programs. Their antagonistic chromatin-modifying activities modulate the expression of many genes and affect many biological processes. Here we report that heterozygous mutations in two core subunits of Polycomb Repressive Complex 2 (PRC2), the histone H3 lysine 27 (H3K27)-specific methyltransferase E(Z) and its partner, the H3 binding protein ESC, increase longevity and reduce adult levels of trimethylated H3K27 (H3K27me3). Mutations in trithorax (trx), a well known antagonist of Polycomb silencing, elevate the H3K27me3 level of E(z) mutants and suppress their increased longevity. Like many long-lived mutants, E(z) and esc mutants exhibit increased resistance to oxidative stress and starvation, and these phenotypes are also suppressed by trx mutations. This suppression strongly suggests that both the longevity and stress resistance phenotypes of PRC2 mutants are specifically due to their reduced levels of H3K27me3 and the consequent perturbation of Polycomb silencing. Consistent with this, long-lived E(z) mutants exhibit derepression of Abd-B, a well-characterized direct target of Polycomb silencing, and Odc1, a putative direct target implicated in stress resistance. These findings establish a role for PRC2 and TRX in the modulation of organismal longevity and stress resistance and indicate that moderate perturbation of Polycomb silencing can increase longevity.aging | epigenetics | histone methyltransferase | Polycomb silencing
The products of the trithorax gene are required to stably maintain homeotic gene expression patterns established during embryo-genesis by the action of the transiently expressed segmentation genes. We have determined the intron/exon structure of the trx gene and the large alternatively spliced trx RNAs, which are capable of encoding only two protein isoforms. These very large trx proteins differ only in a long Ser- and Gly-rich N-terminal extension, encoded by exon II, which is present only in the larger trx isoform. We have identified a novel variant of the highly conserved nuclear receptor type of DNA binding domain. We have found that the previously identified Cys-rich central region contains multiple novel zinc finger motifs which are also present in the Polycomb-like protein and RBP2, a retinoblastoma binding protein. The trx proteins terminate with another novel conserved domain which we have identified in proteins from three kingdoms, including plants and fungi, indicating that has an ancient origin. Many of these proteins are chromosomally associated, suggesting that this domain may be involved in interactions between trx and other highly conserved components of chromatin involved in transcription regulation. The sequence alterations of trx mutations identify the highly conserved regions of trx as critical for the function of these large proteins. We show that zygotically expressed trx RNAs encoding the larger protein isoform are initially expressed in a spatially restricted pattern which overlaps the expression domains of the BX-C genes Ubx, abd-A and Abd-B. This pattern is transient and evolves into a broader expression domain encompassing the entire germ band during the extended germ band stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.