Human tyrosylprotein sulfotransferases catalyze the transfer of a sulfuryl moiety from the universal sulfate donor PAPS to the hydroxyl substituent of tyrosine residues in proteins and peptides to yield tyrosine sulfated products and PAP. Tyrosine sulfation occurs in the trans-Golgi network affecting an estimated 1% of the tyrosine residues in all secreted and membrane-bound proteins in higher order eukaryotes. In this paper, an effective LC-MS-based TPST kinetics assay was developed and utilized to measure the kinetic properties of human TPST-2 and investigate its catalytic mechanism when G protein-coupled CC-chemokine receptor 8 (CCR8) peptides were used as acceptor substrates. Through initial rate kinetics, product inhibition studies, and radioactive-labeling experiments, our data strongly suggest a two-site ping-pong model for TPST-2 action. In this mechanistic model, the enzyme allows independent binding of substrates to two distinct sites and involves the formation of a sulfated enzyme covalent intermediate. Some insights on the important amino acid residues at the catalytic site of TPST-2 and its covalent intermediate are also presented. To our knowledge, this is the first detailed study of the reaction kinetics and mechanism reported for human TPST-2 or any other Golgi-resident sulfotransferase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.