The extent to which behavioural choices reflect fine-tuned evolutionary adaptation remains an open debate. For herbivorous insects, the preference-performance hypothesis (PPH) states that female insects will evolve to oviposit on hosts on which their offspring fare best. In this study, we use meta-analysis to assess the balance of evidence for and against the PPH, and to evaluate the role of individual factors proposed to influence host selection by female insects. We do so in an explicitly bitrophic context (herbivores versus plants). Overall, our analyses offer clear support for the PPH: Offspring survive better on preferred plant types, and females lay more eggs on plant types conducive to offspring performance. We also found evidence for an effect of diet breadth on host choice: female preference for Ôgood quality plantsÕ was stronger in oligophagous insects than in polyphagous insects. Nonetheless, despite the large numbers of preference-performance studies conducted to date, sample sizes in our meta-analysis are low due to the inconsistent format used by authors to present their results. To improve the situation, we invite authors to contribute to the data base emerging from this work, with the aim of reaching a strengthened synthesis of the subject field.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Anthropogenic habitat disturbance is a major threat to tropical forests and understanding the ecological consequences of this disturbance is crucial for the conservation of biodiversity. There have been many attempts to determine the ecological traits associated with bird species' vulnerability to disturbance, but no attempt has been made to synthesize these studies to show consensus. We analyzed data from 57 published studies (covering 1214 bird species) that investigated the response of tropical bird assemblages to moderate forest disturbance (e.g., selective logging). Our results show that the mean abundance of species from six commonly reported feeding guilds responded differently to disturbance and that species' ecological traits (body size, local population size, and geographic range size) and evolutionary relationships may influence responses in some guilds. Granivore abundance increased significantly and insectivore and frugivore abundance decreased significantly following disturbance. These general conclusions were robust to the effects of ecological traits and phylogeny. Responses of carnivores, nectarivores, and omnivores were less clear, but analyses that accounted for phylogeny indicated that these guilds declined following disturbance. In contrast to the other guilds, the reported responses of carnivores and nectarivores differed among regions (Asia vs. Neotropics) and were influenced by the sampling protocols used in different studies (e.g., time since disturbance), which may explain the difficulty in detecting general responses to disturbance in these guilds. Overall, general patterns governed the responses of species to habitat disturbance, and the differential responses of guilds suggested that disturbance affects trophic organization and thus ecosystem functioning.
Insects and their six-legged relatives (Hexapoda) comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence times and have been combined with birth-death models to infer patterns of diversification across a range of taxonomic groups. Here we generate a dated phylogeny of hexapod families, based on previously published sequence data and literature derived constraints, in order to identify the broad pattern of macroevolutionary changes responsible for the composition of the extant hexapod fauna. The most prominent increase in diversification identified is associated with the origin of complete metamorphosis, confirming this as a key innovation in promoting insect diversity. Subsequent reductions are recovered for several groups previously identified as having a higher fossil diversity during the Mesozoic. In addition, a number of recently derived taxa are found to have radiated following the development of flowering plant (angiosperm) floras during the mid-Cretaceous. These results reveal that the composition of the modern hexapod fauna is a product of a key developmental innovation, combined with multiple and varied evolutionary responses to environmental changes from the mid Cretaceous floral transition onward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.