In Central and Western Anatolia two continent-derived massifs simultaneously underthrusted an oceanic lithosphere in the Cretaceous and ended up with very contrasting metamorphic grades: high pressure, low temperature in the Tavşanlı zone and the low pressure, high temperature in the Kırşehir Block. To assess why, we reconstruct the Cretaceous paleogeography and plate configuration of Central Anatolia using structural, metamorphic, and geochronological constraints and Africa-Europe plate reconstructions. We review and provide new 40 Ar/ 39 Ar and U/Pb ages from Central Anatolian metamorphic and magmatic rocks and ophiolites and show new paleomagnetic data on the paleo-ridge orientation in a Central Anatolian Ophiolite. Intraoceanic subduction that formed within the Neotethys around 100-90 Ma along connected N-S and E-W striking segments was followed by overriding oceanic plate extension. Already during suprasubduction zone ocean spreading, continental subduction started. We show that the complex geology of central and southern Turkey can at first order be explained by a foreland-propagating thrusting of upper crustal nappes derived from a downgoing, dominantly continental lithosphere: the Kırşehir Block and Tavşanlı zone accreted around 85 Ma, the Afyon zone around 65 Ma, and Taurides accretion continued until after the middle Eocene. We find no argument for Late Cretaceous subduction initiation within a conceptual "Inner Tauride Ocean" between the Kırşehir Block and the Afyon zone as widely inferred. We propose that the major contrast in metamorphic grade between the Kırşehir Block and the Tavşanlı zone primarily results from a major contrast in subduction obliquity and the associated burial rates, higher temperature being reached upon higher subduction obliquity.
Eastern Mediterranean subduction accommodated Africa‐Eurasia convergence since Mesozoic time and produced multiple subducted slab fragments in the mantle below Anatolia. These included the north dipping Cyprus and ENE‐dipping Antalya slabs, which are currently separated by an upper mantle slab gap. Segmentation of these slabs, and associated mantle flow, may have contributed to <8 Ma uplift of the Central Anatolian Plateau. The western Central Taurides fold‐thrust belt in southern Turkey is in the upper plate above the Antalya slab and contains a geological record of its subduction. We present the first orogen‐scale balanced cross section of the Taurides and find that it formed in two stages: (1) Cretaceous to middle Eocene thrusting resulted in a minimum of 73‐km shortening, and (2) Mio‐Pliocene thrusting resulted in a minimum of 17.5‐km shortening. Eocene shortening accounts for only ~5 Myr of Africa‐Eurasia plate convergence. It is unlikely that >400 km of post to middle Eocene plate convergence was accommodated between the Taurides and its Beydağları platform foreland and instead must have been accommodated south of Beydağları. The associated southward plate boundary jump separated the Antalya slab from the African plate and the Cyprus slab. The isolated Antalya slab was left in an intraplate setting and is probably still attached to Beydağları today. We suggest the continental composition of the Antalya slab may have prevented its detachment. Finally, the gap between the Antalya and Cyprus slabs existed since at least Eocene time; their decoupling likely did not contribute to late Neogene Central Anatolian Plateau uplift.
The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature but how plate boundaries are being created over 1000s of km in short periods of geological time remains elusive. Here, we show from geological observations that a >12,000 km long plate boundary formed between the Indian and African plates around 105 Ma with subduction segments from the eastern Mediterranean region to a newly established India-Africa rotation pole in the west-Indian ocean where it transitioned into a ridge between India and Madagascar. We find no plate tectonics-related potential triggers of this plate rotation and identify coeval mantle plume rise below Madagascar-India as the only viable driver. For this, we provide a proof of concept by torque balance modeling revealing that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large plate rotation initiating divergent and convergent plate boundaries far away from the plume head that may even be an underlying cause of the emergence of modern plate tectonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.