Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules.
Since the advent of click chemistry in 2001, the 1,4-disubstituted triazole has become an increasingly common motif in chemical sensors. Although these click-derived triazoles are generally used as a convenient method of ligation, their prevalence in chemosensors can be attributed to their ability to bind both cations and anions. In this critical review, we present an overview of the wide range of chemosensors that contain click-derived triazoles, with a particular focus on those cases where the triazole plays a functional, rather than merely a structural, role. Examples are categorised based on method of detection and key structural features, providing a complete picture of the current state of click-based chemosensors, as well as potential future directions for sensor design. (140 references).
In the absence of its natural reaction partner (the N-H proton of the L-cysteinyl-D-valine amide bond), the proposed hydroperoxide intermediate appears to attack the putative thioaldehyde species directly. These results shed light on the events preceding beta-lactam closure in the IPNS reaction cycle, and enhance our understanding of the mechanism for reaction of the enzyme with its natural substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.