The synthesis and characterization of (Bu4N)4[S2W18O62].1.23MeCN.0.27H2O are reported. It crystallizes in the monoclinic space group C2/c with a = 22.389(6) A, b = 22.104(3) A, c = 25.505(5) A, beta = 95.690(15) degrees, V = 12560(5) A3, and Z = 4. The anion exists as the gamma* isomer, the second example of this isomer type to be characterized structurally. The equivalent molybdenum salt occurs as the alpha isomer. gamma*-[S2W18O62]4- in MeCN solution displayed four electrochemically reversible one-electron redox processes at E1/2 values of -0.24, -0.62, -1.18, and -1.57 V versus the Fc+/Fc couple. Upon addition of acid in MeCN/H2O (95/5 v/v), the two most cathodic processes converted to an overall two-electron process at -0.71 V. The total data suggested that this process actually comprises two one-electron transfer processes, occurring at different potentials, with associated proton-transfer reactions. The interpretation is supported by simulation of the effect of acid titration upon the cyclic voltammetry. While multiple pathways for correlated reduction and protonation are present in both the molybdenum and tungsten systems, only a single fast oxidation pathway is available. As the reduced forms of [S2W18O62]4- are much weaker bases than those of [S2Mo18O62]4-, the individual oxidation pathways are not the same. However, their existence determines the highly reversible electrochemical behavior that is characteristic of these anions, and that of polyoxometalate systems in general.
Comparative studies on the voltammetric reduction of the alpha and gamma isomers of Dawson [S(2)W(18)O(62)](4)(-) and alpha, beta, and gamma forms of Keggin [SiW(12)O(40)](4)(-) polyoxometalate anions have been undertaken. For the six reversible one-electron [S(2)W(18)O(62)](4)(-)(/5)(-)(/6)(-)(/7)(-)(/8)(-)(/9)(-)(/10)(-) processes in acetonitrile, reversible potentials (E(0)(')) were found to be independent of isomeric form within experimental error (+/-5 mV). However, because both the alpha and gamma* isomers of [Bu(4)N](4)[S(2)W(18)O(62)] are insoluble in water, solid-state voltammetric studies with microcrystals adhered to electrode surfaces in contact with aqueous Et(4)NCl and Bu(4)NCl electrolyte media were also possible. Although no isomeric distinction was again detected in the solid-state studies, it was found that reduction of adhered solid by four or more electron equivalents led to rapid dissolution. When Et(4)NCl was the electrolyte, this dissolution process coupled with potential cycling experiments enabled conventional solution-phase data to be obtained in water for the analogous six one-electron reduction steps previously detected in acetonitrile. A strong medium effect attributed to Lewis acidity effects was apparent upon comparison with E(0)(') data obtained in water and acetonitrile. In contrast, with the [SiW(12)O(40)](4)(-) system, E(0)(') values for the [SiW(12)O(40)](4)(-)(/5)(-)(/6)(-)(/7)(-) processes in acetonitrile exhibited a larger (about 70 mV) dependence on isomeric form, and the isomerization step, [gamma-SiW(12)O(40)](6)(-)--> [alpha-SiW(12)O(40)](6)(-), was detected on the voltammetric time scale. The influence of isomeric form on reversible potential data is considered in terms of structural and charge density differences exhibited in the [S(2)W(18)O(62)](4)(-) and [SiW(12)O(40)](4)(-) systems studied in this paper and published data available on the alpha, beta, gamma, and gamma isomers of [As(2)W(18)O(62)](6)(-) and [P(2)W(18)O(62)](6)(-) Dawson anions and Keggin systems.
The one-electron reduction of [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-) at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45-7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e(-) <--> Q (E(1)(0/) = -0.275 V, k(1)(0/) = 0.008 cm s(-1), and alpha(1) = 1/2), PH(+) + e(-) <--> QH(+) (E(2)(0/) = -0.036 V, k(2)(0/) = 0.014 cm s(-1), and alpha(2) = 1/2), PH(+) <--> P + H(+) (K(P) = 3.02 x 10(-6) M), and QH(+) <--> Q + H(+) (K(Q) = 2.35 x 10(-10) M), where P, Q, PH(+), and QH(+) correspond to [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-), [alpha(2)-Fe(II)(OH)P(2)W(17)O(61)](9-), [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), and [alpha(2)-Fe(II)(OH(2))P(2)W(17)O(61)](8-), respectively; E(1)(0)' and E(2)(0)' are the formal potentials, k(1)(0)' and k(2)(0)' are the formal (standard) rate constants, and K(P) and K(Q) are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that alpha(1) = alpha(2), can be well-described by the behavior of a simple redox couple, ox + e(-) <--> red, whose formal potential, E(app)(0)', and standard rate constant, k(app)(0)', are straightforwardly derived functions of pH, as are the values of E(1)(0)', k(1)(0)', E(2)(0)', k(2)(0)', and K(P) (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that alpha(app) = 1/2, and the simulation program DigiSim was used to determine the values of E(app)(0)' and k(app)(0)', which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid-base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E(1)(0)' and k(1)(0)'; K(Q) was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H(2)O. The value of the diffusion coefficient of the [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), 2.92 x 10(-6) cm(2) s(-1), was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-)) led to the loss of the reactant and precluded lengthy experimentation.
A series of phospho-polyoxotungstate anions was transferred to the gas phase via electrospray ionization (ESI), and the anions' fragmentation was examined by collision-induced dissociation (CID). The anions included [PW12O40]3-, [P2W18O62]6-, and {Co4(H2O)2][PW9O34]2}10- as well as lacunary and metal-substituted derivatives such as [PW11O39]7- and [MPW11O39]5- (M = Co(II), Ni(II), Cu(II)). Common species observed in the mass spectra arose from protonation and alkali metal cationization of the precursor ions. Additional species arising from the formal loss of oxide from the precursor species were also observed, presumably formed via protonation and the loss of an oxo ligand as water. These processes of protonation/cationization and the loss of water both led to species with reduced gas-phase anionic charges, and their formation appears to be driven by the enhanced effects of Coulombic repulsion in the desolvated species generated during transfer to the gas phase via ESI. Fragmentation of selected species was examined by multistage mass spectrometry experiments employing CID. Fragmentation occurred via multiple reaction channels, leading to pairs of complementary product anions whose total stoichiometry and charge matched those of the precursor anion. For example, [PW12O40]3- fragmented to give pairs of product ions of general formulas [W(x)O(3x+1)]2- and [PW(12-x)O(39-3x)]- (x = 6-9), with the most intense pair being [W6O19]2- and [PW6O21]-. Similar ions were also observed for fragmentation of [P2W18O61]4- (derived from the loss of water from [P2W18O62]6-). The lacunary and M(II)-substituted lacunary systems fragmented via related pathways, with the latter generating additional fragment ions due to the presence of M(II). These results highlight the usefulness of ESI-MS in the characterization of complex polyoxometalate anion clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.