The main focus of the paper is to review current understanding of floc structure and strength. This has been done by reviewing current theoretical understanding of floc growth and breakage and an analysis of different techniques used for measuring floc strength. An overview has also been made of the general trends seen in floc strength analysis. The rate of floc formation is a balance between breakage and aggregation with flocs eventually reaching a steady-state size for a given shear rate. The steady-state floc size for a particular shear rate can, therefore, be a good indicator of floc strength. This has resulted in the development of a range of techniques to measure floc size at different applied shear levels using a combination of one or more of the following tools: light scattering and transmission; microscopy; photography; video and image analysis software. Floc strength may be simply quantified using the initial floc size for a given shear rate and the floc strength factor. More complex techniques have used theoretical modelling to determine whether flocs break by large-scale fragmentation or smaller-scale surface erosion effects, although this interpretation is open to debate. Impeller-based mixing, ultrasound and vibrating columns have all been used to provide a uniform, accurate and controllable dissipation of energy onto a floc suspension to determine floc strength. Other more recent techniques have used sensitive micromanipulators to measure the force required to break or compress individual flocs, although these techniques have been limited to the measurement of only a few hundred flocs. General trends emerge showing that smaller flocs tend to have greater strength than larger flocs, whilst the use of polymer seems to give increased strength to only some types of floc. Finally, a comparison of the strength of different types of floc (activated sludge flocs, organic matter flocs, sweep flocs and charge neutralised flocs) has been made highlighting differences in relative floc strength.
The growth, breakage, regrowth, and fractal nature of flocs was investigated by use of a laser diffraction particle sizing device. A range of coagulants were investigated for the coagulation of natural organic matter (NOM) and compared to other coagulated systems. The results showed NOM floc structural characteristics varied in steady-state size depending upon which coagulant was used. When compared to other systems, the order of floc size was Fe precipitate > Fe-NOM > latex (in NaCl solution). Floc regrowth after exposure to high shear was limited for all of the flocs under investigation other than for latex in an inert electrolyte. This highlighted differences in the internal bonding structure of flocs, with the results suggesting that physical bonds have a capacity to re-form after breakage. Fractal dimension analysis by small-angle laser light scattering (SALLS) had limited applicability to large flocs that dominated all of the systems under investigation, but the degree of compaction increased as flocs were broken in high shear. This provided a possible mechanistic reason for the irreversible breakage seen.
This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only nonsuspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L −1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.