We report an accelerated measurement technology for prediction of light protection performance of milk packaging by quantifying the ability of a package to preserve a light‐sensitive nutrient present in milk. This measurement technology consists of a light exposure instrument and a detection approach to track changes to the light‐sensitive nutrient, riboflavin (RF), in a light‐exposed solution sample. The light exposure instrument provided an intense, controlled light exposure and a consistent sample environment for an aqueous RF marker solution. Coupled with the light exposure instrument, two alternative detection approaches were used to determine the RF concentration of light‐exposed marker solutions: an accelerated ex situ (AES) approach by high‐performance liquid chromatography or an accelerated in situ (AIS) approach by ultraviolet–visible spectrometry. The capability of each RF determination method was confirmed using measurement systems analysis, and their statistical equivalency was demonstrated. To explore application of the measurement technology for use in package design, a set of high‐density polyethylene packages incorporating surface‐treated TiO2 pigments was evaluated for light protection performance by AES and AIS. For the same package set, experiments monitoring RF degradation in extended‐shelf‐life milk products under retail dairy storage conditions showed strong correlation with the AIS method (R2 > 0.97). Riboflavin retention increased under both retail and accelerated light exposure conditions for package designs containing greater loadings of surface‐treated TiO2 confirming its light protection efficacy. This research illustrates the utility of the accelerated methods to quantitatively evaluate package designs for light protection performance for nutrient preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.