We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green’s functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.
The Dirac–Coulomb equation with positive-energy projection is solved using explicitly correlated Gaussian functions. The algorithm and computational procedure aims for a parts-per-billion convergence of the energy to provide a starting point for further comparison and further developments in relation with high-resolution atomic and molecular spectroscopy. Besides a detailed discussion of the implementation of the fundamental spinor structure, permutation, and point-group symmetries, various options for the positive-energy projection procedure are presented. The no-pair Dirac–Coulomb energy converged to a parts-per-billion precision is compared with perturbative results for atomic and molecular systems with small nuclear charge numbers. Paper II [D. Ferenc, P. Jeszenszki, and E. Mátyus, J. Chem. Phys. 156, 084110 (2022).] describes the implementation of the Breit interaction in this framework.
A variational solution procedure is reported for the many-particle no-pair Dirac–Coulomb and Dirac–Coulomb–Breit Hamiltonians aiming at a parts-per-billion (ppb) convergence of the atomic and molecular energies, described within the fixed nuclei approximation. The procedure is tested for nuclear charge numbers from Z = 1 (hydrogen) to 28 (iron). Already for the lowest Z values, a significant difference is observed from leading-order Foldy–Woythusen perturbation theory, but the observed deviations are smaller than the estimated self-energy and vacuum polarization corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.