Objectives: To investigate whether vibrational impulse stimuli applied to the skull can be used to evoke the vestibulo-ocular reflex (VOR) and detect vestibular lesions. Methods: Twenty four patients with unilateral vestibular loss (UVD), five with bilateral vestibular loss, two with ocular palsies, and 10 healthy subjects participated. Vibrations of the skull were induced with head taps and with a single period of 160 Hz tone burst on the inion, vertex, and the mastoids while the patients viewed a distant target. Several patients were also examined while viewing a near target, with eccentric gaze and in tilted postures. Responses were recorded by EOG. Results: Responses occurred between 5 ms and 20 ms and seemed to be compensatory to the second phase of the sine wave of vibration impulse and were greatly diminished/absent in patients with bilateral VD and ocular palsies. The patients with UVD had asymmetrical responses in the vertical EOG with stimuli applied on the inion and vertex, with enhancement of the response amplitude on the side of vestibular loss and/or diminution on the healthy side. The asymmetry ratios between the healthy subjects and patients with UVD, and among patients with UVD were statistically significant. Some gaze and positional influences could be demonstrated consistent with otolithic reflexes. Conclusion: If the asymmetric responses to skull vibration in UVD result from passive oscillatory movements of the orbital tissues they may reflect the otolith mediated sustained skew torsion. Conversely, if generated by active eye movements, their likely origin is a phasic VOR. B oth primary otolithic and canal afferents of a monkey can be activated by vibration. The lowest phase locking thresholds have been determined at 270 to 280 dB and median values in the most sensitive frequency range (200-400 Hz) at 220 to 240 dB of gravitational acceleration.1 It is still not clear whether activation of vestibular receptors by vibration has the same mechanical basis as the response to more physiological head movements. Mechanical factors are not the only determinants of response dynamics since vestibular nerve fibres can show a frequency dependent increase in gain greater than that predicted for the mechanics of sensory end organs. The mechanics of the otolithic membrane can be approximated by a damped second-order system with a resonant frequency of the order of 50-500 Hz. Thus, in contrast to the cupula-endolymph system in which the upper frequency limit is set below 60 Hz, the otolithic membrane is much better suited for transmission of bone vibrations in the audio frequency range. Conversely, canal neurones tend to be more irregular than otolith neurones, and hence might be expected to have lower vibration thresholds.
Oppositely directed displacements of the head need oppositely directed vestibulo-ocular reflexes (VOR), i.e. compensatory responses. Ocular vestibular-evoked myogenic potentials (oVEMPs) mainly reflect the synchronous extraocular muscle activity involved in the process of generating the VOR. The oVEMPs recorded beneath the eyes when looking up represent electro-myographic responses mainly of the inferior oblique muscle. We aimed: (1) to study the properties of these responses as they were produced by head acceleration impulses to the forehead and to the back of the head; (2) to investigate the relationships between these responses and the 3-D linear head accelerations that might reflect the true stimulus that acts on the vestibular hair cells. We produced backward- and forward-directed acceleration stimuli in four conditions (positive and negative head acceleration impulses to the hairline and to the inion) in 16 normal subjects. The oVEMPs produced by backward- and forward-directed accelerations of the head showed consistent differences. They were opposite in the phase. The responses produced by backward accelerations of the head began with an initial negativity, n11; conversely, those produced by accelerations directed forward showed initially a positive response, p11. There was a high inter-subject correlation of head accelerations along the head anteroposterior and transverse axes, but almost no correlation of accelerations along the vertical axis of the head. We concluded that backward-directed head accelerations produced an initial excitatory response, and forward-directed accelerations of the head were accompanied by an initial inhibitory response. These responses showed dependence on acceleration direction in the horizontal plane of the head. This could be consistent with activation of the utricle.
Objective: To determine whether unilateral activation of the vestibular labyrinth by brief air conducted tones can elicit disconjugate reflex eye movements in healthy subjects. Methods: 40 normal volunteers, one patient with bilateral congenital sensorineural deafness, and four patients with an acoustic neuromas were subjected to monoaural air conducted tones (125 to 6000 Hz; 132 dB SPL; 3-4 ms). Eye movements were recorded by averaged EOG. Results: The stimuli elicited bi-or triphasic transient EOG responses with a duration of about 10 ms and a 7-8 ms latency in 16 of 40 tested volunteers and in the patient with congenital deafness. In patients with acoustic neuromas the responses were induced only by stimuli to the healthy ear. The responses in the vertical EOG were recorded predominantly from the eye contralateral to the stimulated ear and were negligible ipsilaterally. These responses were similar to those found in patients with only one functioning labyrinth reported in a previous study. In the remaining subjects the responses were absent or barely discernible. Conclusions: (1) Disconjugate eye movements in response to brief mechanical stimuli in this audio frequency range always indicated the side of the activated vestibular labyrinth. (2) In contrast to longer stimuli used by conventional vestibular activation methods, brief stimuli may activate only the direct monocular vestibulo-ocular pathway. This may be because the responses elicited by brief stimuli cease well before the slower indirect vestibulo-ocular subsystem can align the eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.