Turbulent jet noise is a controversial fluid mechanical puzzle that has amused and bewildered researchers for more than half a century. Whereas numerical simulations are now capable of simultaneously predicting turbulence and its radiated sound, the theoretical framework that would guide noise-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over distances far exceeding the integral scales of turbulence. Their signatures are readily distinguished in vortical turbulence; the irrotational, evanescent near field; and the propagating far field. We review evidence of the existence, energetics, dynamics, and acoustic efficiency of wave packets. We highlight how extensive data available from simulations and modern measurement techniques can be used to distill acoustically relevant turbulent motions. The evidence supports theories that seek to represent wave packets as instability waves, or more general modal solutions of the governing equations, and confirms the acoustic importance of these structures in the aft-angle radiation of high subsonic and supersonic jets. The resulting unified view of wave packets provides insights that can help guide control strategies.
The purpose of this paper is to characterize and model waves that are observed within the potential core of subsonic jets and relate them to previously observed tones in the near-nozzle region. The waves are detected in data from a large-eddy simulation of a Mach 0.9 isothermal jet and modelled using parallel and weakly non-parallel linear modal analysis of the Euler equations linearized about the turbulent mean flow, as well as simplified models based on a cylindrical vortex sheet and the acoustic modes of a cylindrical soft duct. In addition to the Kelvin–Helmholtz instability waves, three types of waves with negative phase velocities are identified in the potential core: upstream- and downstream-propagating duct-like acoustic modes that experience the shear layer as a pressure-release surface and are therefore radially confined to the potential core, and upstream-propagating acoustic modes that represent a weak coupling between the jet core and the free stream. The slow streamwise contraction of the potential core imposes a frequency-dependent end condition on the waves that is modelled as the turning points of a weakly non-parallel approximation of the waves. These turning points provide a mechanism by which the upstream- and downstream-travelling waves can interact and exchange energy through reflection and transmission processes. Paired with a second end condition provided by the nozzle, this leads to the possibility of resonance in limited frequency bands that are bound by two saddle points in the complex wavenumber plane. The predicted frequencies closely match the observed tones detected outside of the jet. The vortex-sheet model is then used to systematically explore the Mach number and temperature ratio dependence of the phenomenon. For isothermal jets, the model suggests that resonance is likely to occur in a narrow range of Mach number,$0.82<M<1$.
To investigate the effects of the nozzle-exit conditions on jet flow and sound fields, large-eddy simulations of an isothermal Mach 0.9 jet issued from a convergent-straight nozzle are performed at a diameter-based Reynolds number of $1\times 10^{6}$. The simulations feature near-wall adaptive mesh refinement, synthetic turbulence and wall modelling inside the nozzle. This leads to fully turbulent nozzle-exit boundary layers and results in significant improvements for the flow field and sound predictions compared with those obtained from the typical approach based on laminar flow in the nozzle. The far-field pressure spectra for the turbulent jet match companion experimental measurements, which use a boundary-layer trip to ensure a turbulent nozzle-exit boundary layer to within 0.5 dB for all relevant angles and frequencies. By contrast, the initially laminar jet results in greater high-frequency noise. For both initially laminar and turbulent jets, decomposition of the radiated noise into azimuthal Fourier modes is performed, and the results show similar azimuthal characteristics for the two jets. The axisymmetric mode is the dominant source of sound at the peak radiation angles and frequencies. The first three azimuthal modes recover more than 97 % of the total acoustic energy at these angles and more than 65 % (i.e. error less than 2 dB) for all angles. For the main azimuthal modes, linear stability analysis of the near-nozzle mean-velocity profiles is conducted in both jets. The analysis suggests that the differences in radiated noise between the initially laminar and turbulent jets are related to the differences in growth rate of the Kelvin–Helmholtz mode in the near-nozzle region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.