Heterogeneous processes at solid/gas, liquid/gas and solid/liquid interfaces are ubiquitous in modern devices and technologies but often difficult to study quantitatively. Full characterization requires measuring the depth profiles of chemical composition and state with enhanced sensitivity to narrow interfacial regions of a few to several nm in extent over those originating from the bulk phases on either side of the interface. We show for a model system of NaOH and CsOH in an B1-nm thick hydrated layer on a-Fe 2 O 3 (haematite) that combining ambient-pressure X-ray photoelectron spectroscopy and standing-wave photoemission spectroscopy provides the spatial arrangement of the bulk and interface chemical species, as well as local potential energy variations, along the direction perpendicular to the interface with sub-nm accuracy. Standing-wave ambient-pressure photoemission spectroscopy is thus a very promising technique for measuring such important interfaces, with relevance to energy research, heterogeneous catalysis, electrochemistry, and atmospheric and environmental science.
Magnetic configurations in heterostructures are often difficult to probe when the magnetic entities are buried inside. In this study we have captured magnetic and magnetoresistance "fingerprints" of Co nanodiscs embedded in Co/Cu multilayered nanowires using a first-order reversal curve method. In 200nm diameter nanowires, the magnetic configurations can be tuned by adjusting the Co nanodisc aspect ratio. Nanowires with the thinnest Co nanodiscs exhibit single domain behavior, while those with thicker Co reverse via vortex states. A superposition of giant and anisotropic magnetoresistance is observed, which corresponds to the different magnetic configurations of the Co nanodiscs.
Ultrathin films of nickel deposited onto (1 0 0) Si substrates were found to form kinetically constrained multilayered interface structures characterized by structural and compositional gradients. The presence of a native SiO 2 on the substrate surface in tandem with thickness-dependent intrinsic stress of the metal film limits the solid-state reaction between Ni and Si. A roughly 6.5 nm thick Ni film on top of the native oxide was observed regardless of the initial nominal film thickness of either 5 or 15 nm. The thickness of the silicide layer that formed by Ni diffusion into the Si substrate, however, scales with the nominal film thickness. Cross-sectional in situ annealing experiments in the transmission electron microscope elucidate the kinetics of interface transformation towards thermodynamic equilibrium. Two competing mechanisms are active during thermal annealing: thermally activated diffusion of Ni through the native oxide layer and subsequent transformation of the observed compositional gradient into a thick reaction layer of NiSi 2 with an epitaxial orientation relationship to the Si substrate; and, secondly, metal film dispersion and subsequent formation of faceted Ni islands on top of the native oxide layer.
Combined first-order reversal curve (FORC) analyses of the magnetization (M-FORC) and magnetoresistance (MR-FORC) have been employed to provide a comprehensive study of the M-MR correlation in two canonical systems: a NiFe/Cu/FePt pseudo spin valve (PSV) and a [Co/Cu] 8 multilayer. In the PSV, due to the large difference in switching fields and minimal interactions between the NiFe and the FePt layers, the M and MR show a simple one-to-one relationship during reversal. In the [Co/Cu] 8 multilayer, the correlation between the magnetization reversal and the MR evolution is more complex. This is primarily due to the similar switching fields of, and interactions between, the constituent Co layers. The FORC protocol accesses states with much higher spin disorders and larger MRs than those found along the conventional major loop field cycle. Unlike the M-FORC measurements, which only probe changes in the macroscopic magnetization, the MR-FORCs are more sensitive to the microscopic domain configurations as those are most important in determining the resultant MR effect size. This approach is generally applicable to spintronic systems to realize the maximum spin disorder and the largest MR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.