During developmental growth, collagens are believed to be continuously deposited into an extracellular matrix which is increasingly stabilized by the formation of covalent cross-links throughout life. However, the age-related changes in rates of synthetic and degradative processes are less well understood. In the present study we measured rates of collagen synthesis in vivo using a flooding dose of unlabelled proline given with [14C]proline and determining production of hydroxy[14C]proline. Degradation of newly synthesized collagen was estimated from the amount of free hydroxy [14C]proline in tissues 30 min after injection. Collagen fractional synthesis rates ranged from about 5%/day in skeletal muscle to 20%/day in hearts of rats aged 1 month. At 15 months of age, collagen fractional synthesis rates had decreased markedly in lung and skin, but in skeletal muscle and heart, rates were unchanged. At 24 months of age, synthesis rates had decreased by at least 10-fold in all tissues, compared with rates at 1 month. The proportion of newly synthesized collagen degraded ranged from 6.4 +/- 0.4% in skin to 61.6 +/- 5.0% in heart at 1 month of age. During aging the proportion degraded increased in all tissues to maximal values at 15 months, ranging from 56 +/- 7% in skin to 96 +/- 1% in heart. These data suggest that there are marked age-related changes in rates of collagen metabolism. They also indicate that synthesis is active even in old animals, where the bulk of collagens produced are destined to be degraded.
Previous reports have provided inconsistent data as to the cis-regulatory elements that are essential for correct expression of the gene for the pro alpha 1 (I) chain of type I procollagen (COL1A1) in the many tissues in which the protein is synthesized. Here, two internally deleted minigene versions of the human COL1A1 gene were used to prepare transgenic mice. The constructs made it possible to test regulatory sequences in the normal context of the gene. Also, in contrast to the reporter genes used in previous experiments, the constructs made it possible to assay quantitatively expression of the exogenous genes relative to expression of the endogenous COL1A1 gene, both as mRNA and as protein. The average level of expression of the minigenes varied among three transgenic lines, but the ratio of expression of the minigenes to expression of the endogenous gene was the same in all transgenic mice of a given line. Within the same line, the ratio of expression was essentially the same in nine or more tissues in which expression of the endogenous gene varied widely. Also, the ratio of expression within a given line was the same in 15-day-old embryos and in mice ranging in age from 4 days to 4 months. In addition, the ratio remained constant during repair of a surgical wound. The results demonstrated, therefore, that the minigene constructs with about 2.3 kb of the promoter region and about 2 kb of the 3'-flanking region contained all of the sequences necessary for correct expression of the genes in a tissue-specific and development-specific manner.(ABSTRACT TRUNCATED AT 250 WORDS)
Lung collagen levels are determined by a balance between synthesis and degradation, processes known to have rapid rates in young animals. Here, we report age-related changes in lung collagen synthesis and degradation in rats at five ages from 1 month to 2 yr. Synthesis rates were determined after injection of [14C]proline with a flooding dose of unlabeled proline, and its appearance as hydroxy-[14C]proline in protein. To determine degradation of newly synthesized collagen, the appearance of hydroxy-[14C]proline, either free or in low-molecular-weight peptides, was compared with hydroxy-[14C]proline in protein. Fractional collagen synthesis rates decreased from 13.51 +/- 0.54%/day at 1 month to 0.97 +/- 0.14%/day at 2 yr of age (p less than 0.05). Total lung collagen production also fell, but only after 15 months, when it decreased from 2.01 +/- 0.16 mg/day at 15 months to 0.54 +/- 0.10 mg/day at 2 yr of age (p less than 0.05). Fractional rates of total collagen degradation, calculated from the difference between rates of synthesis and rates of collagen deposition, decreased 20-fold from 1 month to 2 yr of age. The proportion of newly synthesized collagen degraded increased from 27.6 +/- 3.2% at 1 month to a maximum of 82.3 +/- 1.1% at 15 months. These results suggest that lung collagen synthesis and degradation occur throughout life, and that degradative pathways may play important roles in regulating collagen production during growth and ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.