Raman spectroscopy was used to examine the structure of barium titanium oxide thin films grown by metal-organic chemical vapor deposition (MOCVD) and laser-assisted deposition. The spectra were compared with the spectra of a ceramic specimen and a single crystal. Raman peaks specific to the tetragonal ferroelectric phase of BaTiO3 were seen in the spectra of several films. Other Raman peaks were ascribed to impurity (non-BaTiO3) phases in the films or to the substrates (fused quartz, MgO). Some of the Raman peaks showed a strong polarization dependence. The MOCVD films were also characterized by x-ray diffraction, energy-dispersive x-ray spectroscopy, and transmission electron microscopy. The film-to-film variation of the strength of BaTiO3 features in the Raman spectrum, relative to impurity-phase features, was qualitatively consistent with the x-ray diffraction and electron microscopy results. Spatially resolved Raman measurements showed that the structure of the laser-deposited film varies significantly over the deposited area. The temperature dependencies of the Raman spectra of two MOCVD films were examined in the 25–175 °C range. Raman peaks due to the tetragonal phase of BaTiO3 were observed at temperatures well above the Curie temperature of bulk single-crystal BaTiO3 (132 °C). This observation suggests that the tetragonal ferroelectric phase is stabilized by an anisotropic film-substrate interaction that gives rise to a two-dimensional stress in the plane of the film.
The effect of substrate orientation on the morphologies of epitaxial self-assembled nanostructures was demonstrated using multiferroic 0.67PbTiO3-0.33CoFe2O4 thin films. The two-phase composite films were grown by pulsed laser deposition on single crystal SrTiO3 substrates having (001) and (110) orientations. The nanostructures of both orientations consisted of vertical rod- or platelet-like columns of CoFe2O4 dispersed in a PbTiO3 matrix. For the (001) orientation the platelet habits were parallel to the {110} planes, whereas for the (110) orientation the platelets were parallel to the {111} planes. The differences were explained using a thermodynamic theory of heterophase structures.
An electrical signal, resulting from discrete optical absorptions, has been observed for a variety of elements, including several for which such an effect had not been previously reported. In the present case, the effect is observed as a change in the voltage across a gas discharge tube produced by irradiation with a laser tuned to the wavelength of a transition of a species in the discharge. This signal may be used—without optical detection apparatus—for spectroscopic investigations or analytical determinations of materials in the discharge. Signals were obtained for transitions of lithium, sodium, calcium, barium, uranium, neon, and helium, in commercial hollow cathode lamps, and neon and helium in conventional discharge tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.