Earth's atmospheric CO 2 concentration (c a ) for the Phanerozoic Eon is estimated from proxies and geochemical carbon cycle models. Most estimates come with large, sometimes unbounded uncertainty. Here, we calculate tightly constrained estimates of c a using a universal equation for leaf gas exchange, with key variables obtained directly from the carbon isotope composition and stomatal anatomy of fossil leaves. Our new estimates, validated against ice cores and direct measurements of c a , are less than 1000 ppm for most of the Phanerozoic, from the Devonian to the present, coincident with the appearance and global proliferation of forests. Uncertainties, obtained from Monte Carlo simulations, are typically less than for c a estimates from other approaches. These results provide critical new empirical support for the emerging view that large (~2000-3000 ppm), long-term swings in c a do not characterize the post-Devonian and that Earth's long-term climate sensitivity to c a is greater than originally thought.
Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established.
Measurements of stomatal density and delta(13)C of limber pine (Pinus flexilis) needles (leaves) preserved in pack rat middens from the Great Basin reveal shifts in plant physiology and leaf morphology during the last 30,000 years. Sites were selected so as to offset glacial to Holocene climatic differences and thus to isolate the effects of changing atmospheric CO(2) levels. Stomatal density decreased approximately 17 percent and delta(13)C decreased approximately 1.5 per mil during deglaciation from 15,000 to 12,000 years ago, concomitant with a 30 percent increase in atmospheric CO(2). Water-use efficiency increased approximately 15 percent during deglaciation, if temperature and humidity were held constant and the proxy values for CO(2) and delta(13)C of past atmospheres are accurate. The delta(13)C variations may help constrain hypotheses about the redistribution of carbon between the atmosphere and biosphere during the last glacial-interglacial cycle.
Leaves from several desert and woodland species, including gymnosperms and angiosperms with both C and C physiology, were analyzed to detect trends in δC with elevation and slope aspect along two transects in southeastern Utah and south-central New Mexico, USA. The main difference between the two transects is the steeper elevational gradient for mean annual and summer precipitation in the southern transect. For any given species, we found that isotopic differences between individual plants growing at the same site commonly equal differences measured for plants along the entire altitudinal gradient. In C plants, δC values become slightly enriched at the lowest elevations, the opposite of trends identified in more humid regions. Apparently, increasing water-use efficiency with drought stress offsets the influence of other biotic and abiotic factors that operate to decrease isotopic discrimination with elevation. For some species shared by the two transects (e.g., Pinus edulis and Cercocarpus montanus), δC values are dramatically depleted at sites that receive more than 550 mm mean annual precipitation, roughly the boundary (pedalfer-pedocal) at which soils commonly fill to field capacity in summer and carbonates are leached. We hypothesize that, in summer-wet areas, this may represent the boundary at which drought stress overtakes other factors in determining the sign of δC with elevation. The opposition of isotopic trends with elevation in arid versus humid regions cautions against standard correction for elevation in comparative studies of δC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.