Innovative technology approaches have been increasingly investigated for the last two decades aiming at human being long-term monitoring. However, current solutions suffer from critical limitations. In this paper, a complete system for contactless health-monitoring in home environment is presented. For the first time, radar, wireless communications, and data processing techniques are combined together enabling contactless fall detection and tag-less localization. Practical limitations are considered and properly dealt with. Experimental tests, conducted with human volunteer in a realistic room setting, demonstrate an adequate detection of the target's absolute distance and a success rate of 94.3% in distinguishing fall events from normal movements. The volunteers were free to move in the whole room with no constraints in their movements.
We present a novel, exemplar-based method for audio event detection based on non-negative matrix factorisation. Building on recent work in noise robust automatic speech recognition, we model events as a linear combination of dictionary atoms, and mixtures as a linear combination of overlapping events. The weights of activated atoms in an observation serve directly as evidence for the underlying event classes. The atoms in the dictionary span multiple frames and are created by extracting all possible fixed-length exemplars from the training data. To combat data scarcity of small training datasets, we propose to artificially augment the amount of training data by linear time warping in the feature domain at multiple rates. The method is evaluated on the Office Live and Office Synthetic datasets released by the AASP Challenge on Detection and Classification of Acoustic Scenes and Events.
Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.
Nocturnal home monitoring of epileptic children is often not feasible due to the cumbersome manner of seizure monitoring with the standard method of video/EEG-monitoring. We propose a method for hypermotor seizure detection based on accelerometers attached to the extremities. From the acceleration signals, multiple temporal, frequency, and wavelet-based features are extracted. After determining the features with the highest discriminative power, we classify movement events in epileptic and nonepileptic movements. This classification is only based on a nonparametric estimate of the probability density function of normal movements. Such approach allows us to build patient-specific models to classify movement data without the need for seizure data that are rarely available. If, in the test phase, the probability of a data point (event) is lower than a threshold, this event is considered to be an epileptic seizure; otherwise, it is considered as a normal nocturnal movement event. The mean performance over seven patients gives a sensitivity of 95.24% and a positive predictive value of 60.04%. However, there is a noticeable interpatient difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.