Background: BQCA is a selective allosteric modulator of the M 1 mAChR. Results: Residues that govern BQCA activity were identified using mutagenesis and molecular modeling. Conclusion: BQCA likely occupies a pocket overlapping prototypical mAChR modulators and gains selectivity through cooperativity with orthosteric ligands. Significance: Understanding the structural basis of BQCA function can provide insight into the design of more tailored allosteric ligands.
Background: Bitopic ligands bind concomitantly to orthosteric and allosteric receptor sites. Results: Residues affecting binding and biased signaling of the selective agonists TBPB and 77-LH-28-1 were identified at the M 1 muscarinic receptor. Conclusion: Novel bitopic ligand binding poses and mechanisms of receptor activation were identified. Significance: Understanding the basis of bitopic ligand mechanisms can enable the design of selective ligands.
TRPV4 is a non-selective cation channel that tunes the function of different tissues including the vascular endothelium, lung, chondrocytes, and neurons. GSK1016790A is the selective and potent agonist of TRPV4 and a pharmacological tool that is used to study the TRPV4 physiological function in vitro and in vivo. It remains unknown how the sensitivity of TRPV4 to this agonist is regulated. The spatial and temporal dynamics of receptors are the major determinants of cellular responses to stimuli. Membrane translocation has been shown to control the response of several members of the transient receptor potential (TRP) family of ion channels to different stimuli. Here, we show that TRPV4 stimulation with GSK1016790A caused an increase in [Ca2+]i that is stable for a few minutes. Single molecule analysis of TRPV4 channels showed that the density of TRPV4 at the plasma membrane is controlled through two modes of membrane trafficking, complete, and partial vesicular fusion. Further, we show that the density of TRPV4 at the plasma membrane decreased within 20 min, as they translocate to the recycling endosomes and that the surface density is dependent on the release of calcium from the intracellular stores and is controlled via a PI3K, PKC, and RhoA signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.